Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702.
Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702.
Proc Natl Acad Sci U S A. 2023 Jun 6;120(23):e2305103120. doi: 10.1073/pnas.2305103120. Epub 2023 May 30.
HIV-1 relies on host RNA polymeraseII (Pol II) to transcribe its genome and uses multiple transcription start sites (TSS), including three consecutive guanosines located near the U3-R junction, to generate transcripts containing three, two, and one guanosine at the 5' end, referred to as 3G, 2G, and 1G RNA, respectively. The 1G RNA is preferentially selected for packaging, indicating that these 99.9% identical RNAs exhibit functional differences and highlighting the importance of TSS selection. Here, we demonstrate that TSS selection is regulated by sequences between the CATA/TATA box and the beginning of R. Furthermore, we have generated two HIV-1 mutants with distinct 2-nucleotide modifications that predominantly express 3G RNA or 1G RNA. Both mutants can generate infectious viruses and undergo multiple rounds of replication in T cells. However, both mutants exhibit replication defects compared to the wild-type virus. The 3G-RNA-expressing mutant displays an RNA genome-packaging defect and delayed replication kinetics, whereas the 1G-RNA-expressing mutant exhibits reduced Gag expression and a replication fitness defect. Additionally, reversion of the latter mutant is frequently observed, consistent with sequence correction by plus-strand DNA transfer during reverse transcription. These findings demonstrate that HIV-1 maximizes its replication fitness by usurping the TSS heterogeneity of host RNA Pol II to generate unspliced RNAs with different specialized roles in viral replication. The three consecutive guanosines at the junction of U3 and R may also maintain HIV-1 genome integrity during reverse transcription. These studies reveal the intricate regulation of HIV-1 RNA and complex replication strategy.
HIV-1 依赖宿主 RNA 聚合酶 II(Pol II)转录其基因组,并使用多个转录起始位点(TSS),包括靠近 U3-R 连接点的三个连续的鸟嘌呤,生成含有 5' 端三个、两个和一个鸟嘌呤的转录本,分别称为 3G、2G 和 1G RNA。1G RNA 优先被包装,表明这些 99.9%相同的 RNA 表现出功能差异,并强调了 TSS 选择的重要性。在这里,我们证明 TSS 选择受 CATA/TATA 盒和 R 起始之间的序列调节。此外,我们生成了两种具有不同 2 个核苷酸修饰的 HIV-1 突变体,主要表达 3G RNA 或 1G RNA。这两种突变体都可以产生感染性病毒,并在 T 细胞中进行多次复制。然而,与野生型病毒相比,这两种突变体都表现出复制缺陷。表达 3G RNA 的突变体显示出 RNA 基因组包装缺陷和复制动力学延迟,而表达 1G RNA 的突变体表现出 Gag 表达减少和复制适应性缺陷。此外,经常观察到后者突变体的回复,这与反转录过程中通过正链 DNA 转移进行序列校正一致。这些发现表明,HIV-1 通过篡夺宿主 RNA Pol II 的 TSS 异质性,最大限度地提高其复制适应性,生成具有不同特殊作用的未剪接 RNA,从而在病毒复制中发挥作用。U3 和 R 连接点处的三个连续鸟嘌呤也可能在反转录过程中维持 HIV-1 基因组的完整性。这些研究揭示了 HIV-1 RNA 的复杂调控和复杂的复制策略。