Suppr超能文献

HIV-1 利用宿主 RNA 聚合酶 II 的转录起始位点异质性来最大限度地提高复制适应性。

HIV-1 usurps transcription start site heterogeneity of host RNA polymerase II to maximize replication fitness.

机构信息

Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702.

Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702.

出版信息

Proc Natl Acad Sci U S A. 2023 Jun 6;120(23):e2305103120. doi: 10.1073/pnas.2305103120. Epub 2023 May 30.

Abstract

HIV-1 relies on host RNA polymeraseII (Pol II) to transcribe its genome and uses multiple transcription start sites (TSS), including three consecutive guanosines located near the U3-R junction, to generate transcripts containing three, two, and one guanosine at the 5' end, referred to as 3G, 2G, and 1G RNA, respectively. The 1G RNA is preferentially selected for packaging, indicating that these 99.9% identical RNAs exhibit functional differences and highlighting the importance of TSS selection. Here, we demonstrate that TSS selection is regulated by sequences between the CATA/TATA box and the beginning of R. Furthermore, we have generated two HIV-1 mutants with distinct 2-nucleotide modifications that predominantly express 3G RNA or 1G RNA. Both mutants can generate infectious viruses and undergo multiple rounds of replication in T cells. However, both mutants exhibit replication defects compared to the wild-type virus. The 3G-RNA-expressing mutant displays an RNA genome-packaging defect and delayed replication kinetics, whereas the 1G-RNA-expressing mutant exhibits reduced Gag expression and a replication fitness defect. Additionally, reversion of the latter mutant is frequently observed, consistent with sequence correction by plus-strand DNA transfer during reverse transcription. These findings demonstrate that HIV-1 maximizes its replication fitness by usurping the TSS heterogeneity of host RNA Pol II to generate unspliced RNAs with different specialized roles in viral replication. The three consecutive guanosines at the junction of U3 and R may also maintain HIV-1 genome integrity during reverse transcription. These studies reveal the intricate regulation of HIV-1 RNA and complex replication strategy.

摘要

HIV-1 依赖宿主 RNA 聚合酶 II(Pol II)转录其基因组,并使用多个转录起始位点(TSS),包括靠近 U3-R 连接点的三个连续的鸟嘌呤,生成含有 5' 端三个、两个和一个鸟嘌呤的转录本,分别称为 3G、2G 和 1G RNA。1G RNA 优先被包装,表明这些 99.9%相同的 RNA 表现出功能差异,并强调了 TSS 选择的重要性。在这里,我们证明 TSS 选择受 CATA/TATA 盒和 R 起始之间的序列调节。此外,我们生成了两种具有不同 2 个核苷酸修饰的 HIV-1 突变体,主要表达 3G RNA 或 1G RNA。这两种突变体都可以产生感染性病毒,并在 T 细胞中进行多次复制。然而,与野生型病毒相比,这两种突变体都表现出复制缺陷。表达 3G RNA 的突变体显示出 RNA 基因组包装缺陷和复制动力学延迟,而表达 1G RNA 的突变体表现出 Gag 表达减少和复制适应性缺陷。此外,经常观察到后者突变体的回复,这与反转录过程中通过正链 DNA 转移进行序列校正一致。这些发现表明,HIV-1 通过篡夺宿主 RNA Pol II 的 TSS 异质性,最大限度地提高其复制适应性,生成具有不同特殊作用的未剪接 RNA,从而在病毒复制中发挥作用。U3 和 R 连接点处的三个连续鸟嘌呤也可能在反转录过程中维持 HIV-1 基因组的完整性。这些研究揭示了 HIV-1 RNA 的复杂调控和复杂的复制策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a845/10266039/1b6b40cf4034/pnas.2305103120fig01.jpg

相似文献

1
HIV-1 usurps transcription start site heterogeneity of host RNA polymerase II to maximize replication fitness.
Proc Natl Acad Sci U S A. 2023 Jun 6;120(23):e2305103120. doi: 10.1073/pnas.2305103120. Epub 2023 May 30.
3
Transcriptional start site heterogeneity modulates the structure and function of the HIV-1 genome.
Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):13378-13383. doi: 10.1073/pnas.1616627113. Epub 2016 Nov 9.
4
Selective packaging of HIV-1 RNA genome is guided by the stability of 5' untranslated region polyA stem.
Proc Natl Acad Sci U S A. 2021 Dec 14;118(50). doi: 10.1073/pnas.2114494118.
5
Translation of HIV-1 unspliced RNA is regulated by 5' untranslated region structure.
J Virol. 2024 Oct 22;98(10):e0116024. doi: 10.1128/jvi.01160-24. Epub 2024 Sep 24.
7
HIV-1 RNA genome packaging: it's G-rated.
mBio. 2024 Apr 10;15(4):e0086123. doi: 10.1128/mbio.00861-23. Epub 2024 Feb 27.
10
Transcription start site choice regulates HIV-1 RNA conformation and function.
Curr Opin Struct Biol. 2024 Oct;88:102896. doi: 10.1016/j.sbi.2024.102896. Epub 2024 Aug 14.

引用本文的文献

1
Biomedical Interventions for HIV Prevention and Control: Beyond Vaccination.
Viruses. 2025 May 26;17(6):756. doi: 10.3390/v17060756.
2
4
5
HIV capsids: orchestrators of innate immune evasion, pathogenesis and pandemicity.
J Gen Virol. 2025 Jan;106(1). doi: 10.1099/jgv.0.002057.
6
HIV-1 transcription start sites usage and its impact on unspliced RNA functions in people living with HIV.
mBio. 2025 Feb 5;16(2):e0357624. doi: 10.1128/mbio.03576-24. Epub 2024 Dec 27.
7
30 years of HIV therapy: Current and future antiviral drug targets.
Virology. 2025 Feb;603:110362. doi: 10.1016/j.virol.2024.110362. Epub 2024 Dec 17.
9
Translation of HIV-1 unspliced RNA is regulated by 5' untranslated region structure.
J Virol. 2024 Oct 22;98(10):e0116024. doi: 10.1128/jvi.01160-24. Epub 2024 Sep 24.
10
Distinct negative-sense RNA viruses induce a common set of transcripts encoding proteins forming an extensive network.
J Virol. 2024 Oct 22;98(10):e0093524. doi: 10.1128/jvi.00935-24. Epub 2024 Sep 16.

本文引用的文献

2
HIV-1 hypermethylated guanosine cap licenses specialized translation unaffected by mTOR.
Proc Natl Acad Sci U S A. 2022 Jan 4;119(1). doi: 10.1073/pnas.2105153118.
3
Selective packaging of HIV-1 RNA genome is guided by the stability of 5' untranslated region polyA stem.
Proc Natl Acad Sci U S A. 2021 Dec 14;118(50). doi: 10.1073/pnas.2114494118.
4
5'-Cap sequestration is an essential determinant of HIV-1 genome packaging.
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2112475118.
5
HIV-1: To Splice or Not to Splice, That Is the Question.
Viruses. 2021 Jan 26;13(2):181. doi: 10.3390/v13020181.
6
Structural basis for transcriptional start site control of HIV-1 RNA fate.
Science. 2020 Apr 24;368(6489):413-417. doi: 10.1126/science.aaz7959.
7
Development of Lentiviral Vectors for HIV-1 Gene Therapy with Vif-Resistant APOBEC3G.
Mol Ther Nucleic Acids. 2019 Dec 6;18:1023-1038. doi: 10.1016/j.omtn.2019.10.024. Epub 2019 Oct 31.
8
Impact of 5'-end nucleotide modifications of HIV-1 genomic RNA on reverse transcription.
Biochem Biophys Res Commun. 2019 Sep 3;516(4):1145-1151. doi: 10.1016/j.bbrc.2019.06.152. Epub 2019 Jul 6.
9
mRNA cap regulation in mammalian cell function and fate.
Biochim Biophys Acta Gene Regul Mech. 2019 Mar;1862(3):270-279. doi: 10.1016/j.bbagrm.2018.09.011. Epub 2018 Oct 9.
10
Eukaryotic core promoters and the functional basis of transcription initiation.
Nat Rev Mol Cell Biol. 2018 Oct;19(10):621-637. doi: 10.1038/s41580-018-0028-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验