Scottish Ocean's Institute, University of St Andrews, East sands, St Andrews, United Kingdom.
AZTI, Txatxarramendi Ugartea z/g, Sukarrieta, Bizkaia, Spain.
PLoS One. 2023 May 30;18(5):e0285463. doi: 10.1371/journal.pone.0285463. eCollection 2023.
Species Distribution Models often include spatial effects which may improve prediction at unsampled locations and reduce Type I errors when identifying environmental drivers. In some cases ecologists try to ecologically interpret the spatial patterns displayed by the spatial effect. However, spatial autocorrelation may be driven by many different unaccounted drivers, which complicates the ecological interpretation of fitted spatial effects. This study aims to provide a practical demonstration that spatial effects are able to smooth the effect of multiple unaccounted drivers. To do so we use a simulation study that fit model-based spatial models using both geostatistics and 2D smoothing splines. Results show that fitted spatial effects resemble the sum of the unaccounted covariate surface(s) in each model.
物种分布模型通常包含空间效应,可以提高对未采样位置的预测,并减少在确定环境驱动因素时的 I 型错误。在某些情况下,生态学家试图从生态学角度解释空间效应所显示的空间模式。然而,空间自相关可能是由许多不同的未被解释的驱动因素引起的,这使得拟合空间效应的生态学解释变得复杂。本研究旨在提供一个实际的演示,说明空间效应能够平滑多个未被解释的驱动因素的影响。为此,我们使用模拟研究,使用地质统计学和二维平滑样条对基于模型的空间模型进行拟合。结果表明,拟合的空间效应类似于每个模型中未被解释的协变量曲面的总和。