Department of Life Sciences, Imperial College London Silwood Park, Ascot, Berkshire, SL5 7PY, U.K ; Ecoexist Project P. O. Box HA122HAK, Maun, Botswana.
Department of Zoology, University of Oxford Tinbergen Building, South Parks Road, Oxford, OX1 3PS, U.K.
Ecol Evol. 2014 Mar;4(5):582-93. doi: 10.1002/ece3.837. Epub 2014 Feb 7.
Few universal trends in spatial patterns of wildlife crop-raiding have been found. Variations in wildlife ecology and movements, and human spatial use have been identified as causes of this apparent unpredictability. However, varying spatial patterns of spatial autocorrelation (SA) in human-wildlife conflict (HWC) data could also contribute. We explicitly explore the effects of SA on wildlife crop-raiding data in order to facilitate the design of future HWC studies. We conducted a comparative survey of raided and nonraided fields to determine key drivers of crop-raiding. Data were subsampled at different spatial scales to select independent raiding data points. The model derived from all data was fitted to subsample data sets. Model parameters from these models were compared to determine the effect of SA. Most methods used to account for SA in data attempt to correct for the change in P-values; yet, by subsampling data at broader spatial scales, we identified changes in regression estimates. We consequently advocate reporting both model parameters across a range of spatial scales to help biological interpretation. Patterns of SA vary spatially in our crop-raiding data. Spatial distribution of fields should therefore be considered when choosing the spatial scale for analyses of HWC studies. Robust key drivers of elephant crop-raiding included raiding history of a field and distance of field to a main elephant pathway. Understanding spatial patterns and determining reliable socio-ecological drivers of wildlife crop-raiding is paramount for designing mitigation and land-use planning strategies to reduce HWC. Spatial patterns of HWC are complex, determined by multiple factors acting at more than one scale; therefore, studies need to be designed with an understanding of the effects of SA. Our methods are accessible to a variety of practitioners to assess the effects of SA, thereby improving the reliability of conservation management actions.
尚未发现野生动物作物掠夺的空间模式存在普遍趋势。野生动物生态学和运动以及人类空间利用的变化被认为是造成这种明显不可预测性的原因。然而,人类与野生动物冲突 (HWC) 数据中空间自相关 (SA) 的不同空间模式也可能有影响。我们明确探讨了 SA 对野生动物作物掠夺数据的影响,以便为未来的 HWC 研究提供便利。我们进行了一项被掠夺和未被掠夺的田地的比较调查,以确定作物掠夺的关键驱动因素。数据在不同的空间尺度上进行了子采样,以选择独立的掠夺数据点。从所有数据中得出的模型被拟合到子采样数据集。从这些模型中比较模型参数,以确定 SA 的影响。大多数用于在数据中考虑 SA 的方法都试图纠正 P 值的变化;然而,通过在更广泛的空间尺度上对子采样数据进行采样,我们确定了回归估计的变化。因此,我们主张在一系列空间尺度上报告模型参数,以帮助进行生物学解释。我们的作物掠夺数据中的 SA 模式在空间上存在差异。因此,在选择 HWC 研究分析的空间尺度时,应考虑田地的空间分布。大象作物掠夺的可靠关键驱动因素包括一个田地的掠夺历史和与主要大象路径的距离。了解野生动物作物掠夺的空间模式和确定可靠的社会生态驱动因素对于设计缓解和土地利用规划策略以减少 HWC 至关重要。HWC 的空间模式是复杂的,由在多个尺度上起作用的多个因素决定;因此,需要设计研究以了解 SA 的影响。我们的方法可供各种从业者使用,以评估 SA 的影响,从而提高保护管理行动的可靠性。