Suppr超能文献

利用空间分层模型预测新冠病毒(Covid-19)医院死亡率:一项纳入 74994 名登记患者的队列设计研究

Covid-19 hospital mortality using spatial hierarchical models: cohort design with 74,994 registers.

机构信息

Universidade de São Paulo. Faculdade de Saude Publica. São Paulo, SP, Brasil.

Secretaria Municipal da Saúde de São Paulo. Coordenação de Epidemiologia e Informação. São Paulo, SP, Brasil.

出版信息

Rev Saude Publica. 2023 May 26;57(suppl 1):2s. doi: 10.11606/s1518-8787.2023057004652. eCollection 2023.

Abstract

OBJECTIVE

To investigate the relationship between covid-19 hospital mortality and risk factors, innovating by considering contextual and individual factors and spatial dependency and using data from the city of São Paulo, Brazil.

METHODS

The study was performed with a spatial hierarchical retrospective cohort design using secondary data (individuals and contextual data) from hospitalized patients and their geographic unit residences. The study period corresponded to the first year of the pandemic, from February 25, 2020 to February 24, 2021. Mortality was modeled with the Bayesian context, Bernoulli probability distribution, and the integrated nested Laplace approximations. The demographic, distal, medial, and proximal covariates were considered.

RESULTS

We found that per capita income, a contextual covariate, was a protective factor (odds ratio: 0.76 [95% credible interval: 0.74-0.78]). After adjusting for income, the other adjustments revealed no differences in spatial dependence. Without income inequality in São Paulo, the spatial risk of death would be close to one in the city. Other factors associated with high covid-19 hospital mortality were male sex, advanced age, comorbidities, ventilation, treatment in public healthcare settings, and experiencing the first covid-19 symptoms between January 24 and February 24, 2021.

CONCLUSIONS

Other than sex and age differences, geographic income inequality was the main factor responsible for the spatial differences in the risk of covid-19 hospital mortality. Investing in public policies to reduce socioeconomic inequities, infection prevention, and other intersectoral measures should focus on lower per capita income, to control covid-19 hospital mortality.

摘要

目的

通过考虑情境和个体因素以及空间依赖性,并利用来自巴西圣保罗市的数据,对新冠病毒肺炎医院死亡率与风险因素之间的关系进行创新性研究。

方法

本研究采用空间分层回顾性队列设计,使用来自住院患者及其居住地理单元的二级数据(个体和情境数据)。研究期间对应于疫情第一年,即 2020 年 2 月 25 日至 2021 年 2 月 24 日。采用贝叶斯背景、伯努利概率分布和集成嵌套拉普拉斯逼近法对死亡率进行建模。考虑了人口统计学、远端、中间和近端协变量。

结果

我们发现人均收入(一种情境协变量)是一个保护因素(优势比:0.76 [95%可信区间:0.74-0.78])。在调整收入后,其他调整并未显示空间依赖性的差异。如果没有圣保罗市的收入不平等,城市的死亡空间风险将接近 1。与新冠病毒肺炎医院死亡率高相关的其他因素包括男性、高龄、合并症、通气、在公共医疗保健机构接受治疗以及在 2021 年 1 月 24 日至 2 月 24 日期间首次出现新冠病毒肺炎症状。

结论

除性别和年龄差异外,地理收入不平等是导致新冠病毒肺炎医院死亡率空间差异的主要因素。投资于减少社会经济不平等、感染预防和其他部门间措施的公共政策应侧重于人均收入较低的地区,以控制新冠病毒肺炎医院死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dfc/10185308/3e45a5427be7/1518-8787-rsp-57-s01-02s-gf01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验