Suppr超能文献

变分推断加速了准确的 DNA 混合物反卷积。

Variational inference accelerates accurate DNA mixture deconvolution.

机构信息

Biotype GmbH, Dresden, 01109, Germany; Technische Universität Dresden, Faculty of Computer Science, Dresden, 01187, Germany.

Technische Universität Dresden, Faculty of Computer Science, Dresden, 01187, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany; Center for Systems Biology Dresden, Dresden, 01307, Germany.

出版信息

Forensic Sci Int Genet. 2023 Jul;65:102890. doi: 10.1016/j.fsigen.2023.102890. Epub 2023 May 20.

Abstract

We investigate a class of DNA mixture deconvolution algorithms based on variational inference, and we show that this can significantly reduce computational runtimes with little or no effect on the accuracy and precision of the result. In particular, we consider Stein Variational Gradient Descent (SVGD) and Variational Inference (VI) with an evidence lower-bound objective. Both provide alternatives to the commonly used Markov-Chain Monte-Carlo methods for estimating the model posterior in Bayesian probabilistic genotyping. We demonstrate that both SVGD and VI significantly reduce computational costs over the current state of the art. Importantly, VI does so without sacrificing precision or accuracy, presenting an overall improvement over previously published methods.

摘要

我们研究了一类基于变分推理的 DNA 混合物反卷积算法,结果表明,这可以显著减少计算运行时间,而对结果的准确性和精度几乎没有影响。特别是,我们考虑了 Stein 变分梯度下降(SVGD)和基于证据下界目标的变分推理(VI)。这两种方法都为使用贝叶斯概率基因分型中的马尔可夫链蒙特卡罗方法来估计模型后验提供了替代方法。我们证明了 SVGD 和 VI 都显著降低了计算成本,超过了当前的最先进水平。重要的是,VI 在不牺牲精度或准确性的情况下实现了这一点,与之前发表的方法相比有了整体的改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验