Suppr超能文献

应用机器学习在血液病理学中的应用。

Applied machine learning in hematopathology.

机构信息

Department of Nephrology, University Health Network, Toronto, Ontario, Canada.

Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.

出版信息

Int J Lab Hematol. 2023 Jun;45 Suppl 2:87-94. doi: 10.1111/ijlh.14110. Epub 2023 May 31.

Abstract

An increasing number of machine learning applications are being developed and applied to digital pathology, including hematopathology. The goal of these modern computerized tools is often to support diagnostic workflows by extracting and summarizing information from multiple data sources, including digital images of human tissue. Hematopathology is inherently multimodal and can serve as an ideal case study for machine learning applications. However, hematopathology also poses unique challenges compared to other pathology subspecialities when applying machine learning approaches. By modeling the pathologist workflow and thinking process, machine learning algorithms may be designed to address practical and tangible problems in hematopathology. In this article, we discuss the current trends in machine learning in hematopathology. We review currently available machine learning enabled medical devices supporting hematopathology workflows. We then explore current machine learning research trends of the field with a focus on bone marrow cytology and histopathology, and how adoption of new machine learning tools may be enabled through the transition to digital pathology.

摘要

越来越多的机器学习应用程序正在被开发并应用于数字病理学,包括血液病理学。这些现代计算机工具的目标通常是通过从多个数据源(包括人类组织的数字图像)中提取和总结信息来支持诊断工作流程。血液病理学本质上是多模态的,因此可以作为机器学习应用的理想案例研究。然而,与其他病理学亚专业相比,在应用机器学习方法时,血液病理学也带来了独特的挑战。通过模拟病理学家的工作流程和思维过程,机器学习算法可以被设计用来解决血液病理学中的实际和具体问题。在本文中,我们讨论了血液病理学中的机器学习的当前趋势。我们回顾了目前支持血液病理学工作流程的可用的机器学习驱动的医疗设备。然后,我们探讨了该领域当前的机器学习研究趋势,重点关注骨髓细胞学和组织病理学,以及如何通过向数字病理学的转变来实现新的机器学习工具的采用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验