Suppr超能文献

数字病理学、组织图像分析、人工智能和机器学习特刊:新型技术对毒理学病理学影响的近似。

Special Issue on Digital Pathology, Tissue Image Analysis, Artificial Intelligence, and Machine Learning: Approximation of the Effect of Novel Technologies on Toxicologic Pathology.

机构信息

Amgen Inc, Amgen Research, Translational Safety and Bioanalytical Sciences, South San Francisco, CA, USA.

Novartis, 98560Novartis Institutes for BioMedical Research, NIBR Informatics, Basel, Switzerland.

出版信息

Toxicol Pathol. 2021 Jun;49(4):705-708. doi: 10.1177/0192623321993756. Epub 2021 Apr 12.

Abstract

For decades, it has been postulated that digital pathology is the future. By now it is safe to say that we are living that future. Digital pathology has expanded into all aspects of pathology, including human diagnostic pathology, veterinary diagnostics, research, drug development, regulatory toxicologic pathology primary reads, and peer review. Digital tissue image analysis has enabled users to extract quantitative and complex data from digitized whole-slide images. The following editorial provides an overview of the content of this special issue of to highlight the range of key topics that are included in this compilation. In addition, the editors provide a commentary on important current aspects to consider in this space, such as accessibility of publication content to the machine learning-novice pathologist, the importance of adequate test set selection, and allowing for data reproducibility.

摘要

几十年来,人们一直推测数字病理学是未来的趋势。现在可以肯定地说,我们正在经历这个未来。数字病理学已经扩展到病理学的各个领域,包括人类诊断病理学、兽医诊断、研究、药物开发、监管毒理学病理学主要阅读和同行评审。数字组织图像分析使用户能够从数字化全切片图像中提取定量和复杂的数据。本社论概述了本期特刊的内容,以突出包括在此汇编中的一系列关键主题。此外,编辑还就该领域当前需要考虑的重要方面发表了评论,例如机器学习新手病理学家对出版内容的可访问性、适当测试集选择的重要性以及数据可重复性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验