Suppr超能文献

使用倾向得分匹配和加权处理事件发生时间结局时风险差异的方差估计。

Variance estimation of the risk difference when using propensity-score matching and weighting with time-to-event outcomes.

作者信息

Cafri Guy, Austin Peter C

机构信息

Medical Device Epidemiology and Real-World Data Sciences, J&J Medical Devices and Office of the Chief Medical Officer, New Jersey, USA.

ICES, Toronto, Ontario, Canada.

出版信息

Pharm Stat. 2023 Sep-Oct;22(5):880-902. doi: 10.1002/pst.2317. Epub 2023 May 31.

Abstract

Observational studies are increasingly being used in medicine to estimate the effects of treatments or exposures on outcomes. To minimize the potential for confounding when estimating treatment effects, propensity score methods are frequently implemented. Often outcomes are the time to event. While it is common to report the treatment effect as a relative effect, such as the hazard ratio, reporting the effect using an absolute measure of effect is also important. One commonly used absolute measure of effect is the risk difference or difference in probability of the occurrence of an event within a specified duration of follow-up between a treatment and comparison group. We first describe methods for point and variance estimation of the risk difference when using weighting or matching based on the propensity score when outcomes are time-to-event. Next, we conducted Monte Carlo simulations to compare the relative performance of these methods with respect to bias of the point estimate, accuracy of variance estimates, and coverage of estimated confidence intervals. The results of the simulation generally support the use of weighting methods (untrimmed ATT weights and IPTW) or caliper matching when the prevalence of treatment is low for point estimation. For standard error estimation the simulation results support the use of weighted robust standard errors, bootstrap methods, or matching with a naïve standard error (i.e., Greenwood method). The methods considered in the article are illustrated using a real-world example in which we estimate the effect of discharge prescribing of statins on patients hospitalized for acute myocardial infarction.

摘要

观察性研究在医学中越来越多地被用于估计治疗或暴露对结局的影响。为了在估计治疗效果时尽量减少混杂因素的潜在影响,倾向评分方法经常被采用。通常结局是事件发生的时间。虽然将治疗效果报告为相对效果(如风险比)很常见,但使用绝对效果测量来报告效果也很重要。一种常用的绝对效果测量是风险差异,即治疗组和对照组在指定随访期内事件发生概率的差异。我们首先描述当结局为事件发生时间时,基于倾向评分使用加权或匹配方法进行风险差异的点估计和方差估计的方法。接下来,我们进行了蒙特卡罗模拟,以比较这些方法在点估计偏差、方差估计准确性和估计置信区间覆盖范围方面的相对性能。模拟结果总体上支持在治疗患病率较低时,使用加权方法(未修剪的ATT权重和逆概率加权法)或卡尺匹配进行点估计。对于标准误差估计,模拟结果支持使用加权稳健标准误差、自助法或与朴素标准误差(即格林伍德方法)匹配。本文中考虑的方法通过一个实际例子进行说明,在该例子中我们估计他汀类药物出院处方对因急性心肌梗死住院患者的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验