不同倾向评分方法在估计治疗对生存结局的绝对效应方面的表现:一项模拟研究。

The performance of different propensity score methods for estimating absolute effects of treatments on survival outcomes: A simulation study.

作者信息

Austin Peter C, Schuster Tibor

机构信息

Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada Institute of Health Management, Policy and Evaluation, University of Toronto, Toronto, Ontario, Canada Schulich Heart Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada

Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research of the Jewish General Hospital, Montreal, Quebec, Canada Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada.

出版信息

Stat Methods Med Res. 2016 Oct;25(5):2214-2237. doi: 10.1177/0962280213519716. Epub 2014 Jan 23.

Abstract

Observational studies are increasingly being used to estimate the effect of treatments, interventions and exposures on outcomes that can occur over time. Historically, the hazard ratio, which is a relative measure of effect, has been reported. However, medical decision making is best informed when both relative and absolute measures of effect are reported. When outcomes are time-to-event in nature, the effect of treatment can also be quantified as the change in mean or median survival time due to treatment and the absolute reduction in the probability of the occurrence of an event within a specified duration of follow-up. We describe how three different propensity score methods, propensity score matching, stratification on the propensity score and inverse probability of treatment weighting using the propensity score, can be used to estimate absolute measures of treatment effect on survival outcomes. These methods are all based on estimating marginal survival functions under treatment and lack of treatment. We then conducted an extensive series of Monte Carlo simulations to compare the relative performance of these methods for estimating the absolute effects of treatment on survival outcomes. We found that stratification on the propensity score resulted in the greatest bias. Caliper matching on the propensity score and a method based on earlier work by Cole and Hernán tended to have the best performance for estimating absolute effects of treatment on survival outcomes. When the prevalence of treatment was less extreme, then inverse probability of treatment weighting-based methods tended to perform better than matching-based methods.

摘要

观察性研究越来越多地被用于估计治疗、干预措施和暴露因素对随时间可能发生的结局的影响。从历史上看,一直报告的是风险比,它是一种效应的相对度量。然而,当同时报告效应的相对度量和绝对度量时,医疗决策能得到最好的信息支持。当结局本质上是事件发生时间时,治疗效果也可以量化为由于治疗导致的平均或中位生存时间的变化,以及在特定随访期内事件发生概率的绝对降低。我们描述了三种不同的倾向评分方法,即倾向评分匹配、按倾向评分分层以及使用倾向评分的治疗权重逆概率,如何用于估计治疗对生存结局的绝对效应度量。这些方法都基于估计治疗组和未治疗组的边际生存函数。然后,我们进行了一系列广泛的蒙特卡罗模拟,以比较这些方法在估计治疗对生存结局的绝对效应方面的相对性能。我们发现,按倾向评分分层导致的偏差最大。倾向评分卡尺匹配以及基于科尔和埃尔南早期工作的一种方法,在估计治疗对生存结局的绝对效应方面往往表现最佳。当治疗的患病率不太极端时,基于治疗权重逆概率的方法往往比基于匹配的方法表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ac2/5051602/fce17e0132e8/10.1177_0962280213519716-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索