Suppr超能文献

基于质谱的方法来确定内-β-N-乙酰氨基葡萄糖苷酶对 N-连接糖基水解的底物特异性和动力学。

Mass Spectrometry-Based Methods to Determine the Substrate Specificities and Kinetics of N-Linked Glycan Hydrolysis by Endo-β-N-Acetylglucosaminidases.

机构信息

Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.

Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain.

出版信息

Methods Mol Biol. 2023;2674:147-167. doi: 10.1007/978-1-0716-3243-7_10.

Abstract

Glycosylation is a common posttranslational modification of proteins and refers to the covalent addition of glycans, chains of polysaccharides, onto proteins producing glycoproteins. The glycans influence the structure, function, and stability of proteins. They also play an integral role in the immune system, and aberrantly glycosylated proteins have wide ranging effects, including leading to diseases such as autoimmune conditions and cancer. Carbohydrate-active enzymes (CAZymes) are produced in bacteria, fungi, and humans and are enzymes which modify glycans via the addition or subtraction of individual or multiple saccharides from glycans. One of the hurdles in studying these enzymes is determining the types of substrates each enzyme is specific for and the kinetics of enzymatic activity. In this chapter, we discuss methods which are currently used to study the substrate specificity and kinetics of CAZymes and introduce a novel mass spectrometry-based technique which enables the specificity and kinetics of CAZymes to be determined accurately and efficiently.

摘要

糖基化是蛋白质的一种常见翻译后修饰,是指将聚糖(多糖链)共价连接到蛋白质上,生成糖蛋白。糖基化影响蛋白质的结构、功能和稳定性。它们在免疫系统中也起着重要作用,异常糖基化的蛋白质会产生广泛的影响,包括导致自身免疫性疾病和癌症等疾病。碳水化合物活性酶(CAZymes)存在于细菌、真菌和人类中,是通过从糖链上添加或减去单个或多个糖基来修饰聚糖的酶。研究这些酶的一个障碍是确定每种酶特异性的底物类型和酶活性的动力学。在本章中,我们讨论了目前用于研究 CAZymes 底物特异性和动力学的方法,并介绍了一种新的基于质谱的技术,该技术可以准确有效地确定 CAZymes 的特异性和动力学。

相似文献

4
GH18 endo-β-N-acetylglucosaminidases use distinct mechanisms to process hybrid-type N-linked glycans.
J Biol Chem. 2021 Aug;297(2):101011. doi: 10.1016/j.jbc.2021.101011. Epub 2021 Jul 26.
5
Structural basis for the specific cleavage of core-fucosylated -glycans by endo-β--acetylglucosaminidase from the fungus .
J Biol Chem. 2019 Nov 8;294(45):17143-17154. doi: 10.1074/jbc.RA119.010842. Epub 2019 Sep 23.
6
A fluorogenic probe for core-fucosylated glycan-preferred ENGase.
Carbohydr Res. 2023 Jan;523:108724. doi: 10.1016/j.carres.2022.108724. Epub 2022 Nov 17.
7
The two endo-β-N-acetylglucosaminidase genes from Arabidopsis thaliana encode cytoplasmic enzymes controlling free N-glycan levels.
Plant Mol Biol. 2011 Oct;77(3):275-84. doi: 10.1007/s11103-011-9808-7. Epub 2011 Jul 28.
8
Kinetic characterization of a novel endo-β-N-acetylglucosaminidase on concentrated bovine colostrum whey to release bioactive glycans.
Enzyme Microb Technol. 2015 Sep;77:46-53. doi: 10.1016/j.enzmictec.2015.05.007. Epub 2015 Jun 3.
9
Generation of a Mutant Mucor hiemalis Endoglycosidase That Acts on Core-fucosylated N-Glycans.
J Biol Chem. 2016 Oct 28;291(44):23305-23317. doi: 10.1074/jbc.M116.737395. Epub 2016 Sep 14.
10
Characterization of novel endo-β-N-acetylglucosaminidase from Bacteroides nordii that hydrolyzes multi-branched complex type N-glycans.
J Biosci Bioeng. 2022 Jul;134(1):7-13. doi: 10.1016/j.jbiosc.2022.03.011. Epub 2022 Apr 25.

引用本文的文献

2
Potent efficacy of an IgG-specific endoglycosidase against IgG-mediated pathologies.
Cell. 2024 Nov 27;187(24):6994-7007.e12. doi: 10.1016/j.cell.2024.09.038. Epub 2024 Oct 21.

本文引用的文献

1
Mechanism of cooperative N-glycan processing by the multi-modular endoglycosidase EndoE.
Nat Commun. 2022 Mar 3;13(1):1137. doi: 10.1038/s41467-022-28722-w.
2
Sculpting therapeutic monoclonal antibody N-glycans using endoglycosidases.
Curr Opin Struct Biol. 2022 Feb;72:248-259. doi: 10.1016/j.sbi.2021.11.016. Epub 2022 Jan 5.
3
GH18 endo-β-N-acetylglucosaminidases use distinct mechanisms to process hybrid-type N-linked glycans.
J Biol Chem. 2021 Aug;297(2):101011. doi: 10.1016/j.jbc.2021.101011. Epub 2021 Jul 26.
6
Structural and biochemical analyses of β-N-acetylhexosaminidase Am0868 from Akkermansia muciniphila involved in mucin degradation.
Biochem Biophys Res Commun. 2020 Sep 3;529(4):876-881. doi: 10.1016/j.bbrc.2020.06.116. Epub 2020 Jul 28.
7
A protocol for recombinant protein quantification by densitometry.
Microbiologyopen. 2020 Jun;9(6):1175-1182. doi: 10.1002/mbo3.1027. Epub 2020 Apr 7.
8
Structural basis of mammalian high-mannose N-glycan processing by human gut Bacteroides.
Nat Commun. 2020 Feb 14;11(1):899. doi: 10.1038/s41467-020-14754-7.
9
CUPRA-ZYME: An Assay for Measuring Carbohydrate-Active Enzyme Activities, Pathways, and Substrate Specificities.
Anal Chem. 2020 Feb 18;92(4):3228-3236. doi: 10.1021/acs.analchem.9b05007. Epub 2020 Feb 7.
10
Biochemical characteristics and crystallographic evidence for substrate-assisted catalysis of a β-N-acetylhexosaminidase in Akkermansia muciniphila.
Biochem Biophys Res Commun. 2019 Sep 10;517(1):29-35. doi: 10.1016/j.bbrc.2019.06.150. Epub 2019 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验