文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

家族性阿尔茨海默病相关突变对淀粉样前体蛋白(APP)转运、蛋白水解转化和突触发生活性的影响差异。

Differential effects of familial Alzheimer's disease-causing mutations on amyloid precursor protein (APP) trafficking, proteolytic conversion, and synaptogenic activity.

机构信息

Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany.

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.

出版信息

Acta Neuropathol Commun. 2023 Jun 1;11(1):87. doi: 10.1186/s40478-023-01577-y.


DOI:10.1186/s40478-023-01577-y
PMID:37259128
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10234039/
Abstract

The amyloid precursor protein (APP) is a key player in Alzheimer`s disease (AD) and the precursor of the Aβ peptide, which is generated by consecutive cleavages of β- and γ-secretases. Familial Alzheimer's disease (FAD) describes a hereditary subgroup of AD that represents a low percentage of AD cases with an early onset of the disease. Different APP FAD mutations are thought to have qualitatively different effects on its proteolytic conversion. However, few studies have explored the pathogenic and putative physiological differences in more detail. Here, we compared different FAD mutations, located at the β- (Swedish), α- (Flemish, Arctic, Iowa) or γ-secretase (Iberian) cleavage sites. We examined heterologous expression of APP WT and FAD mutants in non-neuronal cells and their impact on presynaptic differentiation in contacting axons of co-cultured neurons. To decipher the underlying molecular mechanism, we tested the subcellular localization, the endocytosis rate and the proteolytic processing in detail by immunoprecipitation-mass spectrometry. Interestingly, we found that only the Iberian mutation showed altered synaptogenic function. Furthermore, the APP Iowa mutant shows significantly decreased α-secretase processing which is in line with our results that APP carrying the Iowa mutation was significantly increased in early endosomes. However, most interestingly, immunoprecipitation-mass spectrometry analysis revealed that the amino acid substitutions of APP FAD mutants have a decisive impact on their processing reflected in altered Aβ profiles. Importantly, N-terminally truncated Aβ peptides starting at position 5 were detected preferentially for APP Flemish, Arctic, and Iowa mutants containing amino acid substitutions around the α-secretase cleavage site. The strongest change in the ratio of Aβ40/Aβ42 was observed for the Iberian mutation while APP Swedish showed a substantial increase in Aβ1-17 peptides. Together, our data indicate that familial AD mutations located at the α-, β-, and γ-secretase cleavage sites show considerable differences in the underlying pathogenic mechanisms.

摘要

淀粉样前体蛋白(APP)是阿尔茨海默病(AD)的关键因素,也是 Aβ肽的前体,Aβ肽通过β-和 γ-分泌酶的连续切割产生。家族性阿尔茨海默病(FAD)描述了 AD 的一个遗传性亚组,占 AD 病例的低比例,疾病发病较早。不同的 APP FAD 突变被认为对其蛋白水解转化有定性不同的影响。然而,很少有研究更详细地探讨其致病和潜在的生理差异。在这里,我们比较了位于β-(瑞典)、α-(佛兰芒、北极、爱荷华)或γ-分泌酶(伊比利亚)切割位点的不同 FAD 突变。我们在非神经元细胞中检查了 APP WT 和 FAD 突变体的异源表达及其对共培养神经元接触轴突中突触前分化的影响。为了解释潜在的分子机制,我们通过免疫沉淀-质谱法详细测试了亚细胞定位、内吞率和蛋白水解处理。有趣的是,我们发现只有伊比利亚突变显示出改变的突触发生功能。此外,APP 爱荷华突变体的 α-分泌酶处理明显减少,这与我们的结果一致,即携带爱荷华突变的 APP 在早期内体中显著增加。然而,最有趣的是,免疫沉淀-质谱分析表明,APP FAD 突变体的氨基酸取代对其加工有决定性影响,这反映在改变的 Aβ 谱中。重要的是,从位置 5 开始的 N 端截断的 Aβ 肽优先检测到 APP 佛兰芒、北极和爱荷华突变体,这些突变体在 α-分泌酶切割位点周围含有氨基酸取代。伊比利亚突变导致 Aβ40/Aβ42 比值变化最大,而 APP 瑞典则导致 Aβ1-17 肽显著增加。总的来说,我们的数据表明,位于 α-、β-和 γ-分泌酶切割位点的家族性 AD 突变在潜在的致病机制方面存在显著差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/e88fc9413352/40478_2023_1577_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/1f1e6da6f002/40478_2023_1577_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/d59b4feff9f1/40478_2023_1577_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/89f8cd56d075/40478_2023_1577_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/3293f60c62e2/40478_2023_1577_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/1c1490226471/40478_2023_1577_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/a0bf35eac796/40478_2023_1577_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/c36c41e68712/40478_2023_1577_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/bccba8fa1532/40478_2023_1577_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/84842a5a7201/40478_2023_1577_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/7fd05f83f2a3/40478_2023_1577_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/91e61e094e46/40478_2023_1577_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/42d547ae30e6/40478_2023_1577_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/e88fc9413352/40478_2023_1577_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/1f1e6da6f002/40478_2023_1577_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/d59b4feff9f1/40478_2023_1577_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/89f8cd56d075/40478_2023_1577_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/3293f60c62e2/40478_2023_1577_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/1c1490226471/40478_2023_1577_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/a0bf35eac796/40478_2023_1577_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/c36c41e68712/40478_2023_1577_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/bccba8fa1532/40478_2023_1577_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/84842a5a7201/40478_2023_1577_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/7fd05f83f2a3/40478_2023_1577_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/91e61e094e46/40478_2023_1577_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/42d547ae30e6/40478_2023_1577_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/10234039/e88fc9413352/40478_2023_1577_Fig13_HTML.jpg

相似文献

[1]
Differential effects of familial Alzheimer's disease-causing mutations on amyloid precursor protein (APP) trafficking, proteolytic conversion, and synaptogenic activity.

Acta Neuropathol Commun. 2023-6-1

[2]
Analysis of Non-Amyloidogenic Mutations in APP Supports Loss of Function Hypothesis of Alzheimer's Disease.

Int J Mol Sci. 2023-1-20

[3]
Major carboxyl terminal fragments generated by γ-secretase processing of the Alzheimer amyloid precursor are 50 and 51 amino acids long.

Am J Geriatr Psychiatry. 2013-5

[4]
Alternative Selection of β-Site APP-Cleaving Enzyme 1 (BACE1) Cleavage Sites in Amyloid β-Protein Precursor (APP) Harboring Protective and Pathogenic Mutations within the Aβ Sequence.

J Biol Chem. 2016-11-11

[5]
Conformational Models of APP Processing by Gamma Secretase Based on Analysis of Pathogenic Mutations.

Int J Mol Sci. 2021-12-18

[6]
Familial Alzheimer's disease mutations in amyloid protein precursor alter proteolysis by γ-secretase to increase amyloid β-peptides of ≥45 residues.

J Biol Chem. 2021

[7]
Modeling the β-secretase cleavage site and humanizing amyloid-beta precursor protein in rat and mouse to study Alzheimer's disease.

Mol Neurodegener. 2020-10-19

[8]
Dissociation between the processivity and total activity of γ-secretase: implications for the mechanism of Alzheimer's disease-causing presenilin mutations.

Biochemistry. 2011-9-30

[9]
A computer-simulated mechanism of familial Alzheimer's disease: Mutations enhance thermal dynamics and favor looser substrate-binding to γ-secretase.

J Struct Biol. 2020-12-1

[10]
Autosomal-dominant Alzheimer's disease mutations at the same codon of amyloid precursor protein differentially alter Aβ production.

J Neurochem. 2013-10-24

引用本文的文献

[1]
Autophagy activators normalize aberrant Tau proteostasis and rescue synapses in human familial Alzheimer's disease iPSC-derived cortical organoids.

bioRxiv. 2025-7-8

[2]
The Role of Neprilysin and Insulin-Degrading Enzyme in the Etiology of Sporadic Alzheimer's Disease.

J Neurosci. 2025-6-4

[3]
Loss of the APP regulator RHBDL4 preserves memory in an Alzheimer's disease mouse model.

Cell Death Dis. 2025-4-12

[4]
Olive Oil Industry By-Products as a Novel Source of Biophenols with a Promising Role in Alzheimer Disease Prevention.

Molecules. 2024-10-12

[5]
Advances in the cell biology of the trafficking and processing of amyloid precursor protein: impact of familial Alzheimer's disease mutations.

Biochem J. 2024-10-2

[6]
Loss of the APP regulator RHBDL4 preserves memory in an Alzheimer's disease mouse model.

bioRxiv. 2024-9-8

本文引用的文献

[1]
Physiological Roles of β-amyloid in Regulating Synaptic Function: Implications for AD Pathophysiology.

Neurosci Bull. 2023-8

[2]
Cryo-EM structures of amyloid-β 42 filaments from human brains.

Science. 2022-1-14

[3]
Microglia contribute to the propagation of Aβ into unaffected brain tissue.

Nat Neurosci. 2022-1

[4]
The Swedish dilemma - the almost exclusive use of APPswe-based mouse models impedes adequate evaluation of alternative β-secretases.

Biochim Biophys Acta Mol Cell Res. 2022-3

[5]
Brothers in arms: proBDNF/BDNF and sAPPα/Aβ-signaling and their common interplay with ADAM10, TrkB, p75NTR, sortilin, and sorLA in the progression of Alzheimer's disease.

Biol Chem. 2021-10-7

[6]
The Amyloid-β Pathway in Alzheimer's Disease.

Mol Psychiatry. 2021-10

[7]
Critical Appraisal of Amyloid Lowering Agents in AD.

Curr Neurol Neurosci Rep. 2021-6-10

[8]
Ensheathment and Myelination of Axons: Evolution of Glial Functions.

Annu Rev Neurosci. 2021-7-8

[9]
Familial Alzheimer's disease mutations in amyloid protein precursor alter proteolysis by γ-secretase to increase amyloid β-peptides of ≥45 residues.

J Biol Chem. 2021

[10]
"A case report: Co-occurrence of cerebral amyloid angiopathy and multiple sclerosis".

Mult Scler Relat Disord. 2020-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索