Suppr超能文献

一种家族性阿尔茨海默病的计算机模拟机制:突变增强了热动力学,有利于γ-分泌酶与底物更松弛地结合。

A computer-simulated mechanism of familial Alzheimer's disease: Mutations enhance thermal dynamics and favor looser substrate-binding to γ-secretase.

机构信息

Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.

Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK - 8000 Aarhus C, Denmark.

出版信息

J Struct Biol. 2020 Dec 1;212(3):107648. doi: 10.1016/j.jsb.2020.107648. Epub 2020 Oct 21.

Abstract

The 4-subunit intramembrane protease complex γ-secretase cleaves many substrates including fragments of the β-amyloid precursor protein (APP), leading to formation of Aβ peptides, and Notch. Mutations in APP and the catalytic subunit of γ-secretase, presenilin, cause familial Alzheimer's disease (fAD). Mutations are assumed to change the substrate-binding and cleavage and thereby the Aβ formed. Whereas a wild-type structure of substrate-bound γ-secretase became recently available from cryogenic electron microscopy (6IYC), the structure and dynamics of mutant proteins remain obscure. Here, we studied five prominent mutants of substrate-bound γ-secretase by explicit all-atom molecular dynamics in a phospholipid membrane model at physiological temperature using the experimental structure as template: The presenilin 1 mutants E280A, G384A, A434C, and L435F and the V717I mutant of APP. Our structures and dynamics provide the first atomic detail into how fAD-causing mutations affect substrate binding to γ-secretase. The pathogenic mutations tend to increase the space and variability in the substrate binding site, as seen e.g. from the distance from catalytic aspartate to substrate cleavage sites. We suggest that we have identified the molecular cause of the "imprecise cleavage" that leads to two trimming pathways in γ-secretase, consistent with the FIST model, which may rationalize the experimental Aβ/Aβ ratios as a molecular basis for fAD.

摘要

四亚基跨膜蛋白酶复合物 γ-分泌酶切割许多底物,包括β-淀粉样前体蛋白 (APP) 的片段,导致 Aβ 肽和 Notch 的形成。APP 和 γ-分泌酶的催化亚基早老素中的突变会导致家族性阿尔茨海默病 (fAD)。突变被认为会改变底物结合和切割,从而改变形成的 Aβ。虽然最近通过低温电子显微镜 (6IYC) 获得了结合底物的 γ-分泌酶的野生型结构,但突变蛋白的结构和动力学仍然不清楚。在这里,我们通过在生理温度下使用实验结构作为模板在磷脂膜模型中进行显式全原子分子动力学研究了五种与底物结合的 γ-分泌酶的显著突变体:早老素 1 突变体 E280A、G384A、A434C 和 L435F 以及 APP 的 V717I 突变体。我们的结构和动力学提供了第一个原子细节,了解 fAD 引起的突变如何影响底物与 γ-分泌酶的结合。致病性突变倾向于增加底物结合位点的空间和可变性,例如从催化天冬氨酸到底物切割位点的距离可以看出。我们认为,我们已经确定了导致 γ-分泌酶中两种修剪途径的“不精确切割”的分子原因,这与 FIST 模型一致,这可能将实验 Aβ/Aβ 比值合理化作为 fAD 的分子基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验