Suppr超能文献

用于促进太阳能制氢的石墨相氮化碳上的精确缺陷工程

Precise Defect Engineering on Graphitic Carbon Nitrides for Boosted Solar H Production.

作者信息

Hou Shaoqi, Gao Xiaochun, Wang Shijian, Yu Xingxing, Liao Jiayan, Su Dawei

机构信息

School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Broadway, NSW, 2007, Australia.

School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264000, China.

出版信息

Small. 2024 Sep;20(39):e2302500. doi: 10.1002/smll.202302500. Epub 2023 Jun 1.

Abstract

Defect engineering has been regarded as an "all-in-one strategy" to alleviate the insufficient solar utilization in g-CN. However, without appropriate modification, the defect benefits will be partly offset due to the formation of deep localized defect states and deteriorated surface states, lowering the photocarrier separation efficiency. To this end, the defective g-CN is designed with both S dopants and N vacancies via a dual-solvent-assisted synthetic approach. The precise defect control is realized by the addition of ethylene glycol (EG) into precursor formation and molten sulfur into the pyrolysis process, which simultaneously induced g-C3N4. with shallow defect states. These shallow defect energy levels can act as a temporary electron reservoir, which are critical to evoke the migrated electrons from CB with a moderate trapping ability, thus suppressing the bulky photocarrier recombination. Additionally, the optimized surface states of DCN-ES are also demonstrated by the highest electron-trapping resistance (R) of 9.56 × 10 Ω cm and the slowest decay kinetics of surface carriers (0.057 s), which guaranteed the smooth surface charge transfer rather than being the recombination sites. As a result, DCN-ES exhibited a superior H evolution rate of 4219.9 µmol g h, which is 29.1-fold higher than unmodified g-CN.

摘要

缺陷工程被视为一种缓解g-CN中太阳能利用不足的“一体化策略”。然而,如果没有适当的修饰,由于深局域缺陷态的形成和表面态的恶化,缺陷带来的益处将被部分抵消,从而降低光载流子分离效率。为此,通过双溶剂辅助合成方法设计了同时含有S掺杂剂和N空位的缺陷型g-CN。通过在前体形成过程中加入乙二醇(EG)以及在热解过程中加入熔融硫来实现精确的缺陷控制,这同时诱导了具有浅缺陷态的g-C3N4。这些浅缺陷能级可以作为一个临时的电子库,对于以适度的俘获能力激发从导带迁移的电子至关重要,从而抑制大量光载流子的复合。此外,DCN-ES优化的表面态还通过9.56×10Ω·cm的最高电子俘获电阻(R)和表面载流子最慢的衰减动力学(0.057 s)得到证明,这保证了表面电荷的顺利转移而不是成为复合位点。结果,DCN-ES表现出4219.9µmol g h的优异析氢速率,比未修饰的g-CN高29.1倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验