Department of Physics and Astronomy, George Mason University, Fairfax, Virginia 22030, USA.
Quantum Science and Engineering Center, George Mason University, Fairfax, Virginia 22030, USA.
J Chem Phys. 2023 Jun 7;158(21). doi: 10.1063/5.0146167.
We investigate the source of error in the Thomas-Fermi-von Weizsäcker (TFW) density functional relative to Kohn-Sham density functional theory (DFT). In particular, through numerical studies on a range of materials, for a variety of crystal structures subject to strain and atomic displacements, we find that while the ground state electron density in TFW orbital-free DFT is close to the Kohn-Sham density, the corresponding energy deviates significantly from the Kohn-Sham value. We show that these differences are a consequence of the poor representation of the linear response within the TFW approximation for the electronic kinetic energy, confirming conjectures in the literature. In so doing, we find that the energy computed from a non-self-consistent Kohn-Sham calculation using the TFW electronic ground state density is in very good agreement with that obtained from the fully self-consistent Kohn-Sham solution.
我们研究了托马斯-费米-冯·魏扎克(Thomas-Fermi-von Weizsäcker,TFW)密度泛函相对于 Kohn-Sham 密度泛函理论(DFT)的误差来源。具体来说,通过对一系列材料的数值研究,针对各种晶体结构在应变和原子位移下的情况,我们发现虽然 TFW 无轨道密度泛函中的基态电子密度接近 Kohn-Sham 密度,但相应的能量却与 Kohn-Sham 值有很大的偏差。我们表明,这些差异是由于 TFW 近似中电子动能的线性响应表示不佳所致,这证实了文献中的推测。通过这样做,我们发现使用 TFW 电子基态密度进行非自洽 Kohn-Sham 计算所得到的能量与完全自洽的 Kohn-Sham 解所得到的能量非常吻合。