Ryczko Kevin, Wetzel Sebastian J, Melko Roger G, Tamblyn Isaac
Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
1QB Information Technologies (1QBit), Vancouver, British Columbia V6E 4B1, Canada.
J Chem Theory Comput. 2022 Feb 8;18(2):1122-1128. doi: 10.1021/acs.jctc.1c00812. Epub 2022 Jan 7.
We use voxel deep neural networks to predict energy densities and functional derivatives of electron kinetic energies for the Thomas-Fermi model and Kohn-Sham density functional theory calculations. We show that the ground-state electron density can be found via direct minimization for a graphene lattice without any projection scheme using a voxel deep neural network trained with the Thomas-Fermi model. Additionally, we predict the kinetic energy of a graphene lattice within chemical accuracy after training from only two Kohn-Sham density functional theory (DFT) calculations. We identify an important sampling issue inherent in Kohn-Sham DFT calculations and propose future work to rectify this problem. Furthermore, we demonstrate an alternative, functional derivative-free, Monte Carlo based orbital-free density functional theory algorithm to calculate an accurate two-electron density in a double inverted Gaussian potential with a machine-learned kinetic energy functional.
我们使用体素深度神经网络来预测托马斯 - 费米模型和科恩 - 沙姆密度泛函理论计算中电子动能的能量密度和泛函导数。我们表明,对于石墨烯晶格,通过使用基于托马斯 - 费米模型训练的体素深度神经网络,无需任何投影方案,通过直接最小化即可找到基态电子密度。此外,在仅从两次科恩 - 沙姆密度泛函理论(DFT)计算进行训练后,我们以化学精度预测了石墨烯晶格的动能。我们识别出科恩 - 沙姆DFT计算中固有的一个重要采样问题,并提出未来工作来纠正此问题。此外,我们展示了一种基于蒙特卡罗的无泛函导数的无轨道密度泛函理论算法,该算法使用机器学习的动能泛函在双倒高斯势中计算精确的双电子密度。