Department of Biohybrid & Medical Textiles (BioTex) at AME-Institute of Applied Medical Engineering, Helmholtz Institute-CBMS, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany.
Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, Jimo road 150, Shanghai, 200120, PR China.
Macromol Biosci. 2023 Sep;23(9):e2300184. doi: 10.1002/mabi.202300184. Epub 2023 Jun 13.
Proper endothelialization and limited collagen deposition on the luminal surface after graft implantation plays a crucial role to prevent the occurrence of stenosis. To achieve these conditions, a biodegradable graft with adequate mechanical properties and the ability to sequentially deliver therapeutic agents isfabricated. In this study, a dual-release system is constructed through coaxial electrospinning by incorporating recombinant human vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGF-β1) inhibitor into silk fibroin (SF) nanofibers to form a bioactive membrane. The functionalized SF membrane as the inner layer of the graft is characterized by the release profile, cell proliferation and protein expression. It presents excellent biocompatibility and biodegradation, facilitating cell attachment, proliferation, and infiltration. The core-shell structure enables rapid VEGF release within 10 days and sustained plasmid delivery for 21 days. A 2.0-mm-diameter vascular graft is fabricated by integrating the SF membrane with decellularized porcine small intestinal submucosa (SIS), aiming to facilitate the integration process under a stable extracellular matrix structure. The bioengineered graft is functionalized with the sequential administration of VEGF and TGF-β1, and with the reinforced and compatible mechanical properties, thereby offers an orchestrated solution for stenosis with potential for in situ vascular tissue engineering applications.
在移植物植入后,适当的内皮细胞化和有限的管腔表面胶原沉积对于防止狭窄的发生起着至关重要的作用。为了达到这些条件,我们制备了一种具有足够机械性能和能够顺序递药能力的可生物降解移植物。在本研究中,通过同轴静电纺丝将重组人血管内皮生长因子(VEGF)和转化生长因子β1(TGF-β1)抑制剂掺入丝素(SF)纳米纤维中,构建了一种双重释放系统,形成了一种具有生物活性的膜。作为移植物内层的功能化 SF 膜具有释放特性、细胞增殖和蛋白表达的特点。它具有优异的生物相容性和可生物降解性,有利于细胞附着、增殖和渗透。核壳结构可在 10 天内实现快速 VEGF 释放,并持续 21 天递药。通过将 SF 膜与脱细胞猪小肠黏膜下层(SIS)集成,制造出 2.0 毫米直径的血管移植物,旨在促进在稳定的细胞外基质结构下的整合过程。生物工程化移植物具有顺序给予 VEGF 和 TGF-β1 的功能,并具有增强和兼容的机械性能,从而为狭窄提供了一种协调的解决方案,具有原位血管组织工程应用的潜力。