Suppr超能文献

通过在丝素蛋白β-折叠上聚集氨基改性纤维素纳米晶体来设计抗菌生物膜。

Designing antimicrobial biomembranes via clustering amino-modified cellulose nanocrystals on silk fibroin β-sheets.

机构信息

Physics Centre of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, 4710-057, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057, Portugal; IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, Braga 4710-057, Portugal.

BCMaterials, Basque Center Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain.

出版信息

Int J Biol Macromol. 2023 Jul 1;242(Pt 3):125049. doi: 10.1016/j.ijbiomac.2023.125049. Epub 2023 May 30.

Abstract

The continuous rising of infections caused by multidrug-resistant pathogens is becoming a global healthcare concern. Developing new bio-based materials with unique chemical and structural features that allow efficient interaction with bacteria is thus important for fighting this phenomenon. To address this issue, we report an antimicrobial biomaterial that results from clustering local facial amphiphilicity from amino-modified cellulose on silk fibroin β-sheets, by simply blending the two components through casting technology. A simple but effective method for creating a membrane that is antibacterial and non-cytotoxic. Amino-modified cellulose nanocrystals (CNC-NH) were mixed with proteinaceous silk fibroin (SF) which resulted in a material with improved crystallinity, higher β-sheet content, and exposed amino-groups at its surface features, proven by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS), that does not occur when the components are individually assembled. The resulting material possesses important antibacterial activity inducing >3 CFU log reduction of Escherichia coli and Staphylococcus epidermidis, while the pristine membranes show no antibacterial effect. The chemical interactions occurring between SF and CNC-NH during casting, exposing the amino moieties at the surface of the material, are proposed as the main reason for this antimicrobial activity. Importantly, the membranes are non-cytotoxic, showing their potential to be used as a new bioinspired material with intrinsic antibacterial activity for biomedical applications. Those may include coatings for medical devices for the control of healthcare-associated infections, with no need for including external antimicrobial agents in the material.

摘要

由多药耐药病原体引起的感染持续上升,正成为全球医疗保健关注的问题。开发具有独特化学和结构特征的新型生物基材料,使其能够与细菌有效相互作用,对于对抗这种现象非常重要。为了解决这个问题,我们报告了一种抗菌生物材料,它是通过简单地将两种成分通过铸造技术混合,使氨基酸修饰的纤维素在丝素蛋白β-片层上局部聚集亲脂性而得到的。这是一种创建具有抗菌和非细胞毒性的膜的简单而有效的方法。将氨基修饰的纤维素纳米晶体 (CNC-NH) 与蛋白质丝素纤维 (SF) 混合,导致材料结晶度提高,β-片层含量增加,并且表面特征暴露出氨基,这通过傅里叶变换红外 (FTIR) 光谱和 X 射线光电子能谱 (XPS) 得到证实,当单独组装两种成分时不会发生这种情况。所得材料具有重要的抗菌活性,可诱导大肠杆菌和表皮葡萄球菌减少超过 3 log CFU,而原始膜则没有抗菌作用。在铸造过程中 SF 和 CNC-NH 之间发生的化学相互作用,使材料表面的氨基部分暴露出来,被认为是这种抗菌活性的主要原因。重要的是,这些膜是非细胞毒性的,表明它们有可能作为一种具有内在抗菌活性的新型仿生材料,用于生物医学应用。这些可能包括用于控制医疗保健相关感染的医疗器械的涂层,而无需在材料中包含外部抗菌剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验