Suppr超能文献

蛋白质-蛋白质相互作用:通过共价策略开发小分子抑制剂/稳定剂。

Protein-protein interactions: developing small-molecule inhibitors/stabilizers through covalent strategies.

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.

Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.

出版信息

Trends Pharmacol Sci. 2023 Jul;44(7):474-488. doi: 10.1016/j.tips.2023.04.007. Epub 2023 May 30.

Abstract

The development of small-molecule inhibitors or stabilizers of selected protein-protein interactions (PPIs) of interest holds considerable promise for the development of research tools as well as candidate therapeutics. In this context, the covalent modification of selected residues within the target protein has emerged as a promising mechanism of action to obtain small-molecule modulators of PPIs with appropriate selectivity and duration of action. Different covalent labeling strategies are now available that can potentially allow for a rational, ground-up discovery and optimization of ligands as PPI inhibitors or stabilizers. This review article provides a synopsis of recent developments and applications of such tactics, with a particular focus on site-directed fragment tethering and proximity-enabled approaches.

摘要

开发具有选择性的小分子抑制剂或稳定剂,以稳定特定的蛋白质-蛋白质相互作用(PPIs),有望成为研发工具和候选治疗药物的重要手段。在这种背景下,通过共价修饰靶蛋白中选定的残基,以获得具有适当选择性和作用持续时间的 PPI 小分子调节剂,这种作用机制具有广阔的发展前景。目前已经有不同的共价标记策略,这些策略有可能实现基于理性的、从头开始的发现和优化配体作为 PPI 抑制剂或稳定剂。本文综述了这些策略的最新进展和应用,特别关注了定点片段连接和邻近效应的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/812f/11003449/72b5cae6bfc7/nihms-1980774-f0001.jpg

相似文献

1
Protein-protein interactions: developing small-molecule inhibitors/stabilizers through covalent strategies.
Trends Pharmacol Sci. 2023 Jul;44(7):474-488. doi: 10.1016/j.tips.2023.04.007. Epub 2023 May 30.
2
Targeting Protein-Protein Interaction with Covalent Small-Molecule Inhibitors.
Curr Top Med Chem. 2019;19(21):1872-1876. doi: 10.2174/1568026619666191011163410.
3
Fragment-Based Stabilizers of Protein-Protein Interactions through Imine-Based Tethering.
Angew Chem Int Ed Engl. 2020 Nov 23;59(48):21520-21524. doi: 10.1002/anie.202008585. Epub 2020 Sep 25.
4
State-of-the-art strategies for targeting protein-protein interactions by small-molecule inhibitors.
Chem Soc Rev. 2015 Nov 21;44(22):8238-59. doi: 10.1039/c5cs00252d. Epub 2015 Aug 6.
5
Covalent fragment-based drug discovery for target tractability.
Curr Opin Struct Biol. 2024 Jun;86:102809. doi: 10.1016/j.sbi.2024.102809. Epub 2024 Mar 29.
6
Targeting protein-protein interactions and fragment-based drug discovery.
Top Curr Chem. 2012;317:145-79. doi: 10.1007/128_2011_265.
7
Molecular glues for protein-protein interactions: Progressing toward a new dream.
Cell Chem Biol. 2024 Jun 20;31(6):1064-1088. doi: 10.1016/j.chembiol.2024.04.002. Epub 2024 May 2.
8
Structure-based design of targeted covalent inhibitors.
Chem Soc Rev. 2018 Jun 5;47(11):3816-3830. doi: 10.1039/c7cs00220c.
9
Benchmark Study Based on 2P2I to Gain Insights into the Discovery of Small-Molecule PPI Inhibitors.
J Phys Chem B. 2018 Mar 8;122(9):2544-2555. doi: 10.1021/acs.jpcb.7b12658. Epub 2018 Feb 22.
10
Covalent fragment libraries in drug discovery.
Drug Discov Today. 2020 Jun;25(6):983-996. doi: 10.1016/j.drudis.2020.03.016. Epub 2020 Apr 13.

引用本文的文献

1
Augmentation of PRDX1-DOK3 interaction alleviates rheumatoid arthritis progression by suppressing plasma cell differentiation.
Acta Pharm Sin B. 2025 Aug;15(8):3997-4013. doi: 10.1016/j.apsb.2025.06.006. Epub 2025 Jun 9.
2
The Potential of Nanopore Technologies in Peptide and Protein Sensing for Biomarker Detection.
Biosensors (Basel). 2025 Aug 16;15(8):540. doi: 10.3390/bios15080540.
3
From Concepts to Inhibitors: A Blueprint for Targeting Protein-Protein Interactions.
Chem Rev. 2025 Jul 23;125(14):6819-6869. doi: 10.1021/acs.chemrev.5c00046. Epub 2025 Jun 24.
4
Inhibition of the Clathrin Terminal Domain-Amphiphysin Protein-Protein Interaction. Probing the Pitstop 2 Aromatic Moiety.
ChemMedChem. 2025 Aug 16;20(16):e202500321. doi: 10.1002/cmdc.202500321. Epub 2025 Jul 11.
5
Mass-spectrometry-based proteomics: from single cells to clinical applications.
Nature. 2025 Feb;638(8052):901-911. doi: 10.1038/s41586-025-08584-0. Epub 2025 Feb 26.
6
SF3B1: from core splicing factor to oncogenic driver.
RNA. 2025 Feb 19;31(3):314-332. doi: 10.1261/rna.080368.124.
9
Exploring Small Molecules Targeting Protein-Protein Interactions (PPIs): Advancements and Future Prospects.
Pharmaceuticals (Basel). 2023 Nov 23;16(12):1644. doi: 10.3390/ph16121644.

本文引用的文献

1
Proximity-enabled covalent binding of IL-2 to IL-2Rα selectively activates regulatory T cells and suppresses autoimmunity.
Signal Transduct Target Ther. 2023 Jan 23;8(1):28. doi: 10.1038/s41392-022-01208-3.
2
Fusicoccin-A Targets Cancerous Inhibitor of Protein Phosphatase 2A by Stabilizing a C-Terminal Interaction with 14-3-3.
ACS Chem Biol. 2022 Nov 18;17(11):2972-2978. doi: 10.1021/acschembio.2c00299. Epub 2022 Oct 18.
3
Advances in covalent drug discovery.
Nat Rev Drug Discov. 2022 Dec;21(12):881-898. doi: 10.1038/s41573-022-00542-z. Epub 2022 Aug 25.
5
The Ascension of Targeted Covalent Inhibitors.
J Med Chem. 2022 Apr 28;65(8):5886-5901. doi: 10.1021/acs.jmedchem.1c02134. Epub 2022 Apr 19.
6
Lysine-Targeting Reversible Covalent Inhibitors with Long Residence Time.
J Am Chem Soc. 2022 Jan 26;144(3):1152-1157. doi: 10.1021/jacs.1c12702. Epub 2022 Jan 18.
7
Reactive chemistry for covalent probe and therapeutic development.
Trends Pharmacol Sci. 2022 Mar;43(3):249-262. doi: 10.1016/j.tips.2021.12.002. Epub 2022 Jan 6.
8
Covalent PROTACs: the best of both worlds?
RSC Med Chem. 2021 Jul 15;12(9):1452-1458. doi: 10.1039/d1md00191d. eCollection 2021 Sep 23.
9
A proteome-wide atlas of lysine-reactive chemistry.
Nat Chem. 2021 Nov;13(11):1081-1092. doi: 10.1038/s41557-021-00765-4. Epub 2021 Sep 9.
10
E3 Ligase Ligands in Successful PROTACs: An Overview of Syntheses and Linker Attachment Points.
Front Chem. 2021 Jul 5;9:707317. doi: 10.3389/fchem.2021.707317. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验