Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia.
The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia.
Plant Genome. 2024 Mar;17(1):e20358. doi: 10.1002/tpg2.20358. Epub 2023 Jun 2.
Climate change is varying the availability of resources, soil physicochemical properties, and rainfall events, which collectively determines soil physical and chemical properties. Soil constraints-acidity (pH < 6), salinity (pH ≤ 8.5), sodicity, and dispersion (pH > 8.5)-are major causes of wheat yield loss in arid and semiarid cropping systems. To cope with changing environments, plants employ adaptive strategies such as phenotypic plasticity, a key multifaceted trait, to promote shifts in phenotypes. Adaptive strategies for constrained soils are complex, determined by key functional traits and genotype × environment × management interactions. The understanding of the molecular basis of stress tolerance is particularly challenging for plasticity traits. Advances in sequencing and high-throughput genomics technologies have identified functional alleles in gene-rich regions, haplotypes, candidate genes, mechanisms, and in silico gene expression profiles at various growth developmental stages. Our review focuses on favorable alleles for enhanced gene expression, quantitative trait loci, and epigenetic regulation of plant responses to soil constraints, including heavy metal stress and nutrient limitations. A strategy is then described for quantitative traits in wheat by investigating significant alleles and functional characterization of variants, followed by gene validation using advanced genomic tools, and marker development for molecular breeding and genome editing. Moreover, the review highlights the progress of gene editing in wheat, multiplex gene editing, and novel alleles for smart control of gene expression. Application of these advanced genomic technologies to enhance plasticity traits along with soil management practices will be an effective tool to build yield, stability, and sustainability on constrained soils in the face of climate change.
气候变化正在改变资源的可利用性、土壤物理化学性质和降雨事件,这些因素共同决定了土壤的物理和化学性质。土壤的限制因素——酸度(pH<6)、盐度(pH≤8.5)、碱度和分散性(pH>8.5)——是干旱和半干旱种植系统中小麦产量损失的主要原因。为了应对不断变化的环境,植物采用了适应策略,如表型可塑性,这是一个关键的多方面特征,以促进表型的转变。受限制土壤的适应策略很复杂,由关键功能特征和基因型×环境×管理相互作用决定。对可塑性特征来说,理解应激耐受的分子基础尤其具有挑战性。测序和高通量基因组学技术的进步已经在基因丰富区域、单倍型、候选基因、机制以及不同生长发育阶段的计算基因表达谱中鉴定出了功能等位基因。我们的综述重点关注了增强基因表达、数量性状位点和表观遗传调控的有利等位基因,这些基因对植物对土壤限制的反应,包括重金属胁迫和养分限制。然后,通过研究重要等位基因和变体的功能特征,利用先进的基因组工具进行基因验证,并开发分子标记进行分子育种和基因组编辑,提出了一个针对小麦数量性状的策略。此外,该综述还强调了基因编辑在小麦中的进展、多重基因编辑以及用于智能控制基因表达的新等位基因。这些先进基因组技术的应用与土壤管理实践相结合,将是在气候变化面前提高受限制土壤产量、稳定性和可持续性的有效工具。