Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Plant Physiol. 2023 Sep 22;193(2):966-979. doi: 10.1093/plphys/kiad324.
There is a limited understanding of the carbon assimilation capacity of nonfoliar green tissues and its impact on yield and seed quality since most photosynthesis research focuses on leaf photosynthesis. In this study, we investigate the photosynthetic efficiency of soybean (Glycine max) pods and seeds in a field setting and evaluate its effect on mature seed weight and composition. We demonstrate that soybean pod and seed photosynthesis contributes 13% to 14% of the mature seed weight. Carbon assimilation by soybean pod and seed photosynthesis can compensate for 81% of carbon loss through the respiration of the same tissues, and our model predicts that soybean pod and seed photosynthesis contributes up to 9% of the total daily carbon gain of the canopy. Chlorophyll fluorescence (CF) shows that the operating efficiency of photosystem II in immature soybean seeds peaks at the 10 to 100 mg seed weight stage, while that of immature pods peaks at the 75 to 100 mg stage. This study provides quantitative information about the efficiency of soybean pod and seed photosynthesis during tissue development and its impact on yield.
由于大多数光合作用研究都集中在叶片光合作用上,因此人们对非叶绿色组织的碳同化能力及其对产量和种子质量的影响的了解有限。在这项研究中,我们在田间环境中研究了大豆(Glycine max)豆荚和种子的光合作用效率,并评估了其对成熟种子重量和成分的影响。我们证明,大豆豆荚和种子的光合作用贡献了成熟种子重量的 13%至 14%。大豆豆荚和种子光合作用的碳同化可以补偿同一组织呼吸作用造成的 81%的碳损失,我们的模型预测,大豆豆荚和种子光合作用贡献了冠层总日碳增益的 9%。叶绿素荧光(CF)表明,在不成熟大豆种子中,光合作用系统 II 的工作效率在 10 到 100 毫克种子重量阶段达到峰值,而在不成熟豆荚中则在 75 到 100 毫克阶段达到峰值。这项研究提供了有关组织发育过程中大豆豆荚和种子光合作用效率及其对产量影响的定量信息。