Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India.
Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India.
ACS Appl Mater Interfaces. 2023 Jun 14;15(23):27893-27904. doi: 10.1021/acsami.3c01947. Epub 2023 Jun 2.
The efficient electrochemical conversion and storage devices can be boosted by the development of cost-effective and durable electrocatalysts. However, simultaneous in-depth understanding of the reaction mechanism is also required. Herein, we report the preparation, characterization, and electrochemical activities of bimetallic NiCo NPs and core-shell NiCo@NiCoO NPs stabilized on N-doped carbon nanotubes (NCNTs). The electrocatalyst is derived from a bimetallic MOF {NiCo(bpe)(N(CN))·(5HO)} (1) via pyrolysis followed by calcination. Pyrolysis of the bimetallic MOF gives rise to bimetallic nanoparticles stabilized on NCNTs, which, when subsequently calcined, leads to the formation of a core-shell structure with a semiconducting oxide shell (NiCoO) encapsulating the NiCo bimetallic NP core. Detailed evaluation of the electrocatalytic performance of NiCo@NiCoO/NCNT proves its worth as a bifunctional catalyst with 380 mV overpotential for oxygen evolution reaction at 10 mA cm current density and 0.87 V (vs RHE) onset for oxygen reduction reaction in the alkaline medium. Additionally, the prepared electrocatalyst efficiently catalyzes the hydrogen evolution reaction with a nominal overpotential of 74 mV (vs RHE) for reaching 10 mA cm current density in acidic medium. The practical applicability of this catalyst is further upheld in the fabrication of a zinc-air battery having high specific capacity with high round-trip efficiency and adequate cycle life. DFT calculations establish that the structure of NiCo@NiCoO/NCNT is crucial for its electrochemical activity since it has the threefold advantages of cooperative charge transfer from Co to Ni, synergistic relationship between the conductive alloy core and semiconducting oxide shell, and a highly conductive N-doped CNT matrix.
高效的电化学转换和存储设备可以通过开发具有成本效益和耐用性的电催化剂来提高。然而,同时也需要深入了解反应机制。在此,我们报告了负载在氮掺杂碳纳米管(NCNT)上的双金属 NiCo NPs 和核壳 NiCo@NiCoO NPs 的制备、表征和电化学活性。该电催化剂是由双金属 MOF {NiCo(bpe)(N(CN))·(5HO)}(1)通过热解和随后的煅烧得到的。双金属 MOF 的热解导致负载在 NCNT 上的双金属纳米颗粒,当进一步煅烧时,形成具有半导体氧化物壳(NiCoO)封装的 NiCo 双金属 NP 核的核壳结构。对 NiCo@NiCoO/NCNT 的电催化性能的详细评估证明了其作为一种双功能催化剂的价值,在碱性介质中,其析氧反应的电流密度为 10 mA cm 时,过电位为 380 mV,氧还原反应的起始电位为 0.87 V(相对于 RHE)。此外,所制备的电催化剂在酸性介质中高效地催化析氢反应,达到 10 mA cm 电流密度的标称过电位为 74 mV(相对于 RHE)。该催化剂在锌空气电池的制备中的实际应用进一步得到了支持,该电池具有高比容量、高往返效率和充足的循环寿命。DFT 计算表明,NiCo@NiCoO/NCNT 的结构对于其电化学活性至关重要,因为它具有 Co 到 Ni 的协同电荷转移、导电合金核和半导体氧化物壳之间的协同关系以及高度导电的 N 掺杂 CNT 基质的三重优势。