基于相控阵的超声无线能量传输在生物医学植入物中的研究。
A Study on Ultrasonic Wireless Power Transfer With Phased Array for Biomedical Implants.
出版信息
IEEE Trans Biomed Circuits Syst. 2023 Aug;17(4):713-724. doi: 10.1109/TBCAS.2023.3282197. Epub 2023 Oct 6.
This article presents the design, fabrication, and sensitivity analysis of an ultrasound (US) wireless power transfer (WPT) link using an external phased array. Optimal beam focusing and steering is needed for efficient, safe, and reliable US WPT to biomedical implants with millimeter (mm) dimensions. Therefore, the main contributions of this work include the investigation of the 1) performance of the US WPT link using different mm-sized US receivers, 2) effect of different types of errors in the delay profile of the beamforming system on the delivered power, and 3) implant's localization. In measurements, the fabricated 0.94 MHz, 32-element array (39.48 × 9.6 × 2 mm) driven by 25 V pulses with beam focusing and steering capability up to 50 mm depth and ±60 angle could deliver power to different mm-sized US receivers within the FDA safety limit of 720 mW/cm. Specifically, several US transducers with a 1 mm dimension (sphere, cubic, disc shape) and 2 mm dimension (disc shape) received 0.095 mW, 0.25 mW, 0.22 mW, and 0.53 mW, respectively, at a 30 mm depth (0 steering angle). Among these transducers, the sphere shape transducer featured less sensitivity to misalignments. A random error in the phased array delays had a more drastic effect on delivered power reduction. For implant's localization, the measurement results demonstrated comparable power delivery by measuring pulse delays of only 5 elements (out of 32 elements) using 4 different interpolation methods.
本文提出了一种使用外部相控阵的超声(US)无线功率传输(WPT)链路的设计、制造和灵敏度分析。对于具有毫米(mm)尺寸的生物医学植入物,高效、安全和可靠的 US WPT 需要最佳的波束聚焦和转向。因此,这项工作的主要贡献包括:1)使用不同 mm 尺寸的 US 接收器研究 US WPT 链路的性能;2)研究波束形成系统延迟特性中不同类型误差对传输功率的影响;3)研究植入物的定位。在测量中,所制造的 0.94 MHz、32 个阵元(39.48×9.6×2mm)采用 25V 脉冲驱动,具有聚焦和转向能力,可在 50mm 深度和±60 度角度内传输功率至不同 mm 尺寸的 US 接收器,且在 FDA 安全限制 720mW/cm 内。具体而言,几种具有 1mm 尺寸(球体、立方体形、盘形)和 2mm 尺寸(盘形)的 US 换能器在 30mm 深度(0 转向角)处分别接收 0.095mW、0.25mW、0.22mW 和 0.53mW。在这些换能器中,球体形状的换能器对失配的敏感度较低。相控阵延迟中的随机误差对传输功率降低的影响更大。对于植入物的定位,测量结果表明,通过仅使用 4 种不同的插值方法测量 5 个(32 个中的 5 个)阵元的脉冲延迟,就可以实现可比较的功率传输。
相似文献
IEEE Trans Biomed Circuits Syst. 2023-8
IEEE Trans Biomed Circuits Syst. 2022-2
Annu Int Conf IEEE Eng Med Biol Soc. 2019-7
IEEE Trans Ultrason Ferroelectr Freq Control. 2022-10
IEEE Trans Biomed Circuits Syst. 2024-4
IEEE Trans Biomed Circuits Syst. 2017-2
Annu Int Conf IEEE Eng Med Biol Soc. 2016-8
IEEE Trans Biomed Circuits Syst. 2018-9-20
IEEE Trans Biomed Circuits Syst. 2021-8
引用本文的文献
Mater Today Bio. 2025-7-4
本文引用的文献
IEEE Trans Ultrason Ferroelectr Freq Control. 2022-10
IEEE Trans Biomed Circuits Syst. 2022-2
IEEE Trans Biomed Circuits Syst. 2021-8
Nat Biotechnol. 2021-7
Neurogastroenterol Motil. 2021-3
IEEE Trans Biomed Circuits Syst. 2020-12
IEEE Trans Biomed Circuits Syst. 2020-6
IEEE Trans Biomed Circuits Syst. 2020-6
Annu Int Conf IEEE Eng Med Biol Soc. 2019-7