Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390, USA.
Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
Sci Rep. 2023 Jun 2;13(1):8951. doi: 10.1038/s41598-023-36001-x.
Fuel influx and metabolism replenish carbon lost during normal neural activity. Ketogenic diets studied in epilepsy, dementia and other disorders do not sustain such replenishment because their ketone body derivatives contain four carbon atoms and are thus devoid of this anaplerotic or net carbon donor capacity. Yet, in these diseases carbon depletion is often inferred from cerebral fluorodeoxyglucose-positron emission tomography. Further, ketogenic diets may prove incompletely therapeutic. These deficiencies provide the motivation for complementation with anaplerotic fuel. However, there are few anaplerotic precursors consumable in clinically sufficient quantities besides those that supply glucose. Five-carbon ketones, stemming from metabolism of the food supplement triheptanoin, are anaplerotic. Triheptanoin can favorably affect Glucose transporter type 1 deficiency (G1D), a carbon-deficiency encephalopathy. However, the triheptanoin constituent heptanoate can compete with ketogenic diet-derived octanoate for metabolism in animals. It can also fuel neoglucogenesis, thus preempting ketosis. These uncertainties can be further accentuated by individual variability in ketogenesis. Therefore, human investigation is essential. Consequently, we examined the compatibility of triheptanoin at maximum tolerable dose with the ketogenic diet in 10 G1D individuals using clinical and electroencephalographic analyses, glycemia, and four- and five-carbon ketosis. 4 of 8 of subjects with pre-triheptanoin beta-hydroxybutyrate levels greater than 2 mM demonstrated a significant reduction in ketosis after triheptanoin. Changes in this and the other measures allowed us to deem the two treatments compatible in the same number of individuals, or 50% of persons in significant beta-hydroxybutyrate ketosis. These results inform the development of individualized anaplerotic modifications to the ketogenic diet.ClinicalTrials.gov registration NCT03301532, first registration: 04/10/2017.
燃料的流入和新陈代谢会补充正常神经活动中损失的碳。在癫痫、痴呆和其他疾病中研究的生酮饮食不能维持这种补充,因为它们的酮体衍生物含有四个碳原子,因此缺乏这种补料或净碳供体能力。然而,在这些疾病中,碳耗竭通常是从脑氟脱氧葡萄糖正电子发射断层扫描中推断出来的。此外,生酮饮食可能疗效不完全。这些缺陷为使用补料燃料提供了动力。然而,除了那些提供葡萄糖的燃料外,临床上可大量使用的补料前体很少。来自食物补充剂三庚酸酯代谢的五碳酮是补料的。三庚酸酯可以有效地影响葡萄糖转运蛋白 1 缺乏症(G1D),一种碳缺乏性脑病。然而,三庚酸酯的组成部分庚酸可以与生酮饮食衍生的辛酸竞争在动物体内的代谢。它也可以为新生葡萄糖生成提供燃料,从而预先阻止酮症。这些不确定性可以通过个体在生酮作用方面的差异进一步加剧。因此,人类研究是必不可少的。因此,我们使用临床和脑电图分析、血糖以及四碳和五碳酮症,在 10 名 G1D 个体中检查了最大耐受剂量的三庚酸酯与生酮饮食的兼容性。在 8 名有三庚酸酯前β-羟丁酸水平大于 2mM 的受试者中,有 4 名显示在三庚酸酯后酮症显著减少。这和其他措施的变化使我们能够认为两种治疗方法在相同数量的个体中兼容,即 50%处于显著β-羟丁酸酮症的个体。这些结果为个体化生酮饮食的补料修饰提供了信息。ClinicalTrials.gov 注册号 NCT03301532,首次注册:2017 年 4 月 10 日。