Wang Shiyang, Wang Kewei, Zhang Yuchen, Jie Yulin, Li Xinpeng, Pan Yuxue, Gao Xiaowen, Nian Qingshun, Cao Ruiguo, Li Qi, Jiao Shuhong, Xu Dongsheng
College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China.
Hefei National Laboratory for Physical Science at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, China.
Angew Chem Int Ed Engl. 2023 Aug 1;62(31):e202304411. doi: 10.1002/anie.202304411. Epub 2023 Jun 22.
The stable cycling of Mg-metal anodes is limited by several problems, including sluggish electrochemical kinetics and passivation at the Mg surface. In this study, we present a high-entropy electrolyte composed of lithium triflate (LiOTf) and trimethyl phosphate (TMP) co-added to magnesium bis(trifluoromethane sulfonyl)imide (Mg(TFSI) /1,2-dimethoxyethane (DME) to significantly improve the electrochemical performance of Mg-metal anodes. The as-formed high-entropy Mg -2DME-OTf -Li -DME-TMP solvation structure effectively reduced the Mg -DME interaction in comparison with that observed in traditional Mg(TFSI) /DME electrolytes, thereby preventing the formation of insulating components on the Mg-metal anode and promoting its electrochemical kinetics and cycling stability. Comprehensive characterization revealed that the high-entropy solvation structure brought OTf and TMP to the surface of the Mg-metal anode and promoted the formation of a Mg (PO ) -rich interfacial layer, which is beneficial for enhancing Mg conductivity. Consequently, the Mg-metal anode achieved excellent reversibility with a high Coulombic efficiency of 98 % and low voltage hysteresis. This study provides new insights into the design of electrolytes for Mg-metal batteries.
镁金属阳极的稳定循环受到几个问题的限制,包括缓慢的电化学动力学和镁表面的钝化。在本研究中,我们提出了一种由三氟甲磺酸锂(LiOTf)和磷酸三甲酯(TMP)共同添加到双(三氟甲烷磺酰)亚胺镁(Mg(TFSI))/1,2 - 二甲氧基乙烷(DME)中组成的高熵电解质,以显著提高镁金属阳极的电化学性能。与传统的Mg(TFSI)/DME电解质相比,所形成的高熵Mg - 2DME - OTf - Li - DME - TMP溶剂化结构有效地降低了Mg - DME相互作用,从而防止了镁金属阳极上绝缘成分的形成,并促进了其电化学动力学和循环稳定性。综合表征表明,高熵溶剂化结构将OTf和TMP带到镁金属阳极表面,并促进了富含Mg(PO)的界面层的形成,这有利于提高Mg的导电性。因此,镁金属阳极实现了优异的可逆性,库仑效率高达98%,电压滞后低。本研究为镁金属电池电解质的设计提供了新的见解。