Suppr超能文献

双相情感障碍患者个体症状轨迹的动态时间规整分析。

Dynamic time warp analysis of individual symptom trajectories in individuals with bipolar disorder.

作者信息

Mesbah R, Koenders M A, Spijker A T, de Leeuw M, van Hemert A M, Giltay E J

机构信息

Department of Psychiatry, Leiden University Medical Centre, Leiden, The Netherlands.

Mental Health Care PsyQ Kralingen, Department of Mood Disorders, Rotterdam, The Netherlands.

出版信息

Bipolar Disord. 2024 Feb;26(1):44-57. doi: 10.1111/bdi.13340. Epub 2023 Jun 3.

Abstract

BACKGROUND

Manic and depressive mood states in bipolar disorder (BD) may emerge from the non-linear relations between constantly changing mood symptoms exhibited as a complex dynamic system. Dynamic Time Warp (DTW) is an algorithm that may capture symptom interactions from panel data with sparse observations over time.

METHODS

The Young Mania Rating Scale and Quick Inventory of Depressive Symptomatology were repeatedly assessed in 141 individuals with BD, with on average 5.5 assessments per subject every 3-6 months. Dynamic Time Warp calculated the distance between each of the 27 × 27 pairs of standardized symptom scores. The changing profile of standardized symptom scores of BD participants was analyzed in individual subjects, yielding symptom dimensions in aggregated group-level analyses. Using an asymmetric time-window, symptom changes that preceded other symptom changes (i.e., Granger causality) yielded a directed network.

RESULTS

The mean age of the BD participants was 40.1 (SD 13.5) years old, and 60% were female participants. Idiographic symptom networks were highly variable between subjects. Yet, nomothetic analyses showed five symptom dimensions: core (hypo)mania (6 items), dysphoric mania (5 items), lethargy (7 items), somatic/suicidality (6 items), and sleep (3 items). Symptoms of the "Lethargy" dimension showed the highest out-strength, and its changes preceded those of "somatic/suicidality," while changes in "core (hypo)mania" preceded those of "dysphoric mania."

CONCLUSION

Dynamic Time Warp may help to capture meaningful BD symptom interactions from panel data with sparse observations. It may increase insight into the temporal dynamics of symptoms, as those with high out-strength (rather than high in-strength) could be promising targets for intervention.

摘要

背景

双相情感障碍(BD)中的躁狂和抑郁情绪状态可能源于作为复杂动态系统表现出的不断变化的情绪症状之间的非线性关系。动态时间规整(DTW)是一种算法,它可以从随时间稀疏观测的面板数据中捕捉症状相互作用。

方法

对141名双相情感障碍患者反复评估杨氏躁狂评定量表和抑郁症状快速清单,平均每名受试者每3 - 6个月进行5.5次评估。动态时间规整计算了27×27对标准化症状评分中每对之间的距离。在个体受试者中分析双相情感障碍参与者标准化症状评分的变化情况,在汇总的组水平分析中得出症状维度。使用非对称时间窗口,先于其他症状变化的症状变化(即格兰杰因果关系)产生一个有向网络。

结果

双相情感障碍参与者的平均年龄为40.1(标准差13.5)岁,60%为女性参与者。个体特异性症状网络在受试者之间高度可变。然而,共性分析显示出五个症状维度:核心(轻)躁狂(6项)、烦躁性躁狂(5项)、无精打采(7项)、躯体/自杀观念(6项)和睡眠(3项)。“无精打采”维度的症状显示出最高的出度强度,其变化先于“躯体/自杀观念”的变化,而“核心(轻)躁狂”的变化先于“烦躁性躁狂”的变化。

结论

动态时间规整可能有助于从具有稀疏观测的面板数据中捕捉有意义的双相情感障碍症状相互作用。它可能会增加对症状时间动态的洞察,因为那些具有高输出强度(而非高输入强度)的症状可能是有前景的干预目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验