Suppr超能文献

心室壁的机械负荷作为脑室周围白质变性的空间指标。

Mechanical loading of the ventricular wall as a spatial indicator for periventricular white matter degeneration.

机构信息

Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States of America; Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States of America.

出版信息

J Mech Behav Biomed Mater. 2023 Jul;143:105921. doi: 10.1016/j.jmbbm.2023.105921. Epub 2023 May 24.

Abstract

Progressive white matter degeneration in periventricular and deep white matter regions appears as white matter hyperintensities (WMH) on MRI scans. To date, periventricular WMHs are often associated with vascular dysfunction. Here, we demonstrate that ventricular inflation resulting from cerebral atrophy and hemodynamic pulsation with every heartbeat leads to a mechanical loading state of periventricular tissues that significantly affects the ventricular wall. Specifically, we present a physics-based modeling approach that provides a rationale for ependymal cell involvement in periventricular WMH formation. Building on eight previously created 2D finite element brain models, we introduce novel mechanomarkers for ependymal cell loading and geometric measures that characterize lateral ventricular shape. We show that our novel mechanomarkers, such as maximum ependymal cell deformations and maximum curvature of the ventricular wall, spatially overlap with periventricular WMH locations and are sensitive predictors for WMH formation. We also explore the role of the septum pellucidum in mitigating mechanical loading of the ventricular wall by constraining the radial expansion of the lateral ventricles during loading. Our models consistently show that ependymal cells are stretched thin only in the horns of the ventricles irrespective of ventricular shape. We therefore pose that periventricular WMH etiology is strongly linked to the deterioration of the over-stretched ventricular wall resulting in CSF leakage into periventricular white matter. Subsequent secondary damage mechanisms, including vascular degeneration, exacerbate lesion formation and lead to progressive growth into deep white matter regions.

摘要

在脑室周围和深部白质区域,进行性白质变性表现为 MRI 扫描上的白质高信号(WMH)。迄今为止,脑室周围的 WMH 通常与血管功能障碍有关。在这里,我们证明了由于脑萎缩和每一次心跳引起的血流脉动导致的脑室膨胀,会对脑室周围组织造成机械负荷状态,从而对脑室壁产生显著影响。具体来说,我们提出了一种基于物理的建模方法,为室管膜细胞参与脑室周围 WMH 形成提供了依据。在之前创建的八个二维有限元脑模型的基础上,我们引入了新的室管膜细胞负荷机械标志物和描述侧脑室形状的几何度量。我们表明,我们的新机械标志物,如室管膜细胞的最大变形和脑室壁的最大曲率,与脑室周围 WMH 的位置空间重叠,并且是 WMH 形成的敏感预测指标。我们还探讨了透明隔在限制侧脑室在加载过程中的径向扩张,从而减轻脑室壁机械负荷方面的作用。我们的模型一致表明,只有在脑室的角部,室管膜细胞才会被拉伸变薄,而与脑室的形状无关。因此,我们提出脑室周围 WMH 的病因与过度拉伸的脑室壁恶化密切相关,导致 CSF 漏入脑室周围白质。随后的继发性损伤机制,包括血管退化,会加剧病变形成,并导致病变向深部白质区域进展。

相似文献

1
Mechanical loading of the ventricular wall as a spatial indicator for periventricular white matter degeneration.
J Mech Behav Biomed Mater. 2023 Jul;143:105921. doi: 10.1016/j.jmbbm.2023.105921. Epub 2023 May 24.
4
A multiphysics model to predict periventricular white matter hyperintensity growth during healthy brain aging.
Brain Multiphys. 2023 Dec;5. doi: 10.1016/j.brain.2023.100072. Epub 2023 May 26.
6
Three-tissue compositional analysis reveals in-vivo microstructural heterogeneity of white matter hyperintensities following stroke.
Neuroimage. 2020 Sep;218:116869. doi: 10.1016/j.neuroimage.2020.116869. Epub 2020 Apr 22.
7
Longitudinal relaxographic imaging of white matter hyperintensities in the elderly.
Fluids Barriers CNS. 2014 Oct 20;11:24. doi: 10.1186/2045-8118-11-24. eCollection 2014.
9
VITA study: white matter hyperintensities of vascular and degenerative origin in the elderly.
J Neural Transm Suppl. 2007(72):181-8. doi: 10.1007/978-3-211-73574-9_23.
10
Diffusion tensor imaging revealed different pathological processes of white matter hyperintensities.
BMC Neurol. 2021 Mar 19;21(1):128. doi: 10.1186/s12883-021-02140-9.

引用本文的文献

1
A Physics-Informed Deep Learning Deformable Medical Image Registration Method Based on Neural ODEs.
Int J Comput Vis. 2025;133(9):6374-6399. doi: 10.1007/s11263-025-02476-6. Epub 2025 Jun 8.
2
Multiciliated ependymal cells: an update on biology and pathology in the adult brain.
Acta Neuropathol. 2024 Sep 10;148(1):39. doi: 10.1007/s00401-024-02784-0.
3
Segmenting mechanically heterogeneous domains via unsupervised learning.
Biomech Model Mechanobiol. 2024 Feb;23(1):349-372. doi: 10.1007/s10237-023-01779-2. Epub 2024 Jan 13.
4
A multiphysics model to predict periventricular white matter hyperintensity growth during healthy brain aging.
Brain Multiphys. 2023 Dec;5. doi: 10.1016/j.brain.2023.100072. Epub 2023 May 26.

本文引用的文献

2
Brain Shape Changes Associated With Cerebral Atrophy in Healthy Aging and Alzheimer's Disease.
Front Mech Eng. 2021 Jul;7. doi: 10.3389/fmech.2021.705653. Epub 2021 Jul 19.
4
Brain aging mechanisms with mechanical manifestations.
Mech Ageing Dev. 2021 Dec;200:111575. doi: 10.1016/j.mad.2021.111575. Epub 2021 Oct 1.
5
Heterogeneity of Cerebral White Matter Lesions and Clinical Correlates in Older Adults.
Stroke. 2021 Jan;52(2):620-630. doi: 10.1161/STROKEAHA.120.031641. Epub 2021 Jan 7.
6
High Blood Lead Levels: An Increased Risk for Development of Brain Hyperintensities among Type 2 Diabetes Mellitus Patients.
Biol Trace Elem Res. 2021 Jun;199(6):2149-2157. doi: 10.1007/s12011-020-02359-6. Epub 2020 Aug 31.
7
Amplified Flow Imaging (aFlow): A Novel MRI-Based Tool to Unravel the Coupled Dynamics Between the Human Brain and Cerebrovasculature.
IEEE Trans Med Imaging. 2020 Dec;39(12):4113-4123. doi: 10.1109/TMI.2020.3012932. Epub 2020 Nov 30.
8
Common Genetic Variation Indicates Separate Causes for Periventricular and Deep White Matter Hyperintensities.
Stroke. 2020 Jul;51(7):2111-2121. doi: 10.1161/STROKEAHA.119.027544. Epub 2020 Jun 10.
9
Adherens Junctions: Guardians of Cortical Development.
Front Cell Dev Biol. 2020 Jan 28;8:6. doi: 10.3389/fcell.2020.00006. eCollection 2020.
10
Biomechanics of Periventricular Injury.
J Neurotrauma. 2020 Apr 15;37(8):1074-1090. doi: 10.1089/neu.2019.6634. Epub 2019 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验