Nie Wenbo, Huang Xuemiao, Zhao Lijing, Wang Taiwei, Zhang Dan, Xu Tianxin, Du Lin, Li Yuxiang, Zhang Weiyuan, Xiao Fengjun, Wang Lisheng
Laboratory Management Office, Jilin University, Changchun, Jilin 130021, PR China; Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China.
Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China.
Tissue Cell. 2023 Aug;83:102124. doi: 10.1016/j.tice.2023.102124. Epub 2023 May 29.
BACKGROUND: Wound healing is a complex and dynamic process that involves a series of cellular and molecular events. Mesenchymal stem cells (MSCs) and their exosomes (MSC-Exos) have crucial functions in cutaneous wound healing. MiR-17-92 is a multifunctional microRNA (miRNA) cluster that plays vital roles in tissue development and tumor angiogenesis. This study aimed to explore the function of miR-17.92 in wound healing as a component of MSC-Exos. METHODS: Human MSCs were cultured in serum-free medium, and exosomes were collected by ultracentrifugation. The levels of miR-17-92 in MSCs and MSC-Exos were determined by quantitative real-time polymerase chain reaction. MSC-Exos were topically applied to full-thickness excision wounds in the skin of miR-17-92 knockout (KO) and wild-type (WT) mice. The proangiogenic and antiferroptotic effects of MSC-Exos overexpressing miR-17-92 were assayed by evaluating the relative levels of angiogenic and ferroptotic markers. RESULTS: MiRNA-17-92 was found to be highly expressed in MSCs and enriched in MSC-Exos. Moreover, MSC-Exos promoted the proliferation and migration of human umbilical vein endothelial cells in vitro. KO of miR-17-92 effectively attenuated the promotion of wound healing by MSC-Exos. Furthermore, exosomes derived from miR-17-92-overexpressing human umbilical cord-derived MSCs accelerated cell proliferation, migration, angiogenesis, and enhanced against erastin-induced ferroptosis in vitro. miR-17-92 plays a key role in the protective effects of MSC-Exos against erastin-induced ferroptosis in HUVECs CONCLUSION: These findings suggest that miR-17-92 participates in the repair ability of MSC-Exos and that miR-17-92-overexpressing exosomes may represent a new strategy for cutaneous wound repair.
J Nanobiotechnology. 2021-5-21
Stem Cell Res Ther. 2025-7-15
Clin Exp Med. 2025-7-6
Cell Death Dis. 2025-4-10
Front Pharmacol. 2025-2-10
Hum Cell. 2024-11-28