State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
Water Res. 2023 Aug 1;241:120156. doi: 10.1016/j.watres.2023.120156. Epub 2023 May 31.
Periodate-based (PI, IO) oxidation processes for pollutant elimination have gained increased attention in recent years. This study shows that nitrilotriacetic acid (NTA) can assist trace Mn(II) in activating PI for fast and long-lasting degradation of carbamazepine (CBZ) (100% degradation in 2 min). PI can oxidize Mn(II) to permanganate(MnO, Mn(VII)) in the presence of NTA, which indicates the important role of transient manganese-oxo species. O isotope labeling experiments using methyl phenyl sulfoxide (PMSO) as a probe further confirmed the formation of manganese-oxo species. The chemical stoichiometric relationship (PI consumption: PMSO generation) and theoretical calculation suggested that Mn(IV)-oxo-NTA species were the main reactive species. The NTA-chelated manganese facilitated direct oxygen transfer from PI to Mn(II)-NTA and prevented hydrolysis and agglomeration of transient manganese-oxo species. PI was transformed completely to stable and nontoxic iodate but not lower-valent toxic iodine species (i.e., HOI, I, and I). The degradation pathways and mechanisms of CBZ were investigated using mass spectrometry and density functional theory (DFT) calculation. This study provided a steady and highly efficient choice for the quick degradation of organic micropollutants and broadened the perspective on the evolution mechanism of manganese intermediates in the Mn(II)/NTA/PI system.
近年来,基于过碘酸盐的(PI、IO)氧化工艺在污染物去除方面受到了越来越多的关注。本研究表明,次氮基三乙酸(NTA)可以辅助痕量 Mn(II)激活 PI,从而实现卡马西平(CBZ)的快速和持久降解(2 分钟内 100%降解)。在 NTA 的存在下,PI 可以将 Mn(II)氧化为高锰酸盐(MnO、Mn(VII)),这表明瞬态锰氧物种的重要作用。使用甲基苯基砜(PMSO)作为探针的氧同位素标记实验进一步证实了锰氧物种的形成。化学计量关系(PI 消耗:PMSO 生成)和理论计算表明,Mn(IV)-氧-NTA 物种是主要的反应性物质。NTA 螯合锰促进了 PI 向 Mn(II)-NTA 的直接氧转移,并防止了瞬态锰氧物种的水解和聚集。PI 完全转化为稳定且无毒的碘酸盐,但不会转化为较低价态的有毒碘物种(即 HOI、I 和 I)。通过质谱和密度泛函理论(DFT)计算研究了 CBZ 的降解途径和机制。本研究为快速降解有机微量污染物提供了一种稳定且高效的选择,并拓宽了对 Mn(II)/NTA/PI 体系中锰中间体演化机制的认识。