Department of Psychology, Stanford University, Stanford, CA 94305, USA.
Department of Psychology, University of California, San Diego, CA 92093, USA.
Philos Trans A Math Phys Eng Sci. 2023 Jul 24;381(2251):20220048. doi: 10.1098/rsta.2022.0048. Epub 2023 Jun 5.
A hallmark of human intelligence is the ability to understand and influence other minds. Humans engage in inferential social learning (ISL) by using commonsense psychology to learn from others and help others learn. Recent advances in artificial intelligence (AI) are raising new questions about the feasibility of human-machine interactions that support such powerful modes of social learning. Here, we envision what it means to develop socially intelligent machines that can learn, teach, and communicate in ways that are characteristic of ISL. Rather than machines that simply predict human behaviours or recapitulate superficial aspects of human sociality (e.g. smiling, imitating), we should aim to build machines that can learn from human inputs and generate outputs for humans by proactively considering human values, intentions and beliefs. While such machines can inspire next-generation AI systems that learn more effectively from humans (as learners) and even help humans acquire new knowledge (as teachers), achieving these goals will also require scientific studies of its counterpart: how humans reason about machine minds and behaviours. We close by discussing the need for closer collaborations between the AI/ML and cognitive science communities to advance a science of both natural and artificial intelligence. This article is part of a discussion meeting issue 'Cognitive artificial intelligence'.
人类智力的一个标志是理解和影响他人思维的能力。人类通过使用常识心理学从他人身上学习并帮助他人学习来进行推理式社会学习 (ISL)。人工智能 (AI) 的最新进展引发了关于支持这种强大社会学习模式的人机交互可行性的新问题。在这里,我们设想开发具有社会智能的机器意味着什么,这些机器可以以 ISL 为特征进行学习、教学和交流。我们的目标不应该是制造仅仅能够预测人类行为或再现人类社交性表面特征的机器(例如微笑、模仿),而应该是构建能够通过主动考虑人类价值观、意图和信仰从人类输入中学习并为人类生成输出的机器。虽然这些机器可以为从人类(作为学习者)更有效地学习的下一代 AI 系统提供灵感,甚至可以帮助人类获得新知识(作为教师),但要实现这些目标还需要对其对应物进行科学研究:人类如何推理机器思维和行为。我们最后讨论了人工智能/机器学习和认知科学社区之间更紧密合作的必要性,以推进自然和人工智能科学。本文是“认知人工智能”讨论会议议题的一部分。