Suppr超能文献

微波激发的 BaSO/BaTiO@PPy 核壳型抗菌复合材料快速治疗金黄色葡萄球菌感染性骨感染。

Microwave-excited, antibacterial core-shell BaSO/BaTiO@PPy heterostructures for rapid treatment of S. aureus-infected osteomyelitis.

机构信息

Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China.

School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China.

出版信息

Acta Biomater. 2023 Sep 1;167:506-518. doi: 10.1016/j.actbio.2023.05.046. Epub 2023 Jun 2.

Abstract

Owing to its deep penetration capability, microwave (MW) therapy has emerged as a promising method to eradicate deep-seated acute bone infection diseases such as osteomyelitis. However, the MW thermal effect still needs to be enhanced to achieve rapid and efficient treatment of deep focal infected areas. In this work, the multi-interfacial core-shell structure barium sulfate/barium polytitanates@polypyrrole (BaSO/BaTiO@PPy) was prepared, which exhibited enhanced MW thermal response via the well-designed multi-interfacial structure. To be specific, BaSO/BaTiO@PPy achieved rapid temperature increases in a short period and efficient clearance of Staphylococcus aureus (S. aureus) infections under MW irradiation. After 15 min MW irradiation, the antibacterial efficacy of BaSO/BaTiO@PPy can reach up to 99.61 ± 0.22%. Their desirable thermal production capabilities originated from enhanced dielectric loss including multiple interfacial polarization and conductivity loss. Additionally, in vitro analysis illuminated that the underlying antimicrobial mechanism was attributed to the noticeable MW thermal effect and changes in energy metabolic pathways on bacterial membrane instigated by BaSO/BaTiO@PPy under MW irradiation. Considering remarkable antibacterial efficiency and acceptable biosafety, we envision that it has significant value in broadening the pool of desirable candidates to fight against S. aureus-infected osteomyelitis. STATEMENT OF SIGNIFICANCE: The treatment of deep bacterial infection remains challenging due to the ineffectiveness of antibiotic treatment and the susceptibility to bacterial resistance. Microwave (MW) thermal therapy (MTT) is a promising approach with remarkable penetration to centrally heat up the infected area. This study proposes to utilize the core-shell structure BaSO/BaTiO@PPy as an MW absorber to achieve localized heating under MW radiation for MTT. In vitro experiments demonstrated that the disrupted bacterial membrane is primarily due to the localized high temperature and interrupted electron transfer chain. As a consequence, its antibacterial rate is as high as 99.61% under MW irradiation. It is shown that the BaSO/BaTiO@PPy is a promising candidate for eliminating bacterial infection in deep-seated tissues.

摘要

由于微波(MW)治疗具有较强的穿透能力,因此它已成为消除骨髓炎等深部急性骨感染疾病的一种很有前途的方法。然而,MW 的热效应仍需要增强,以实现对深部病灶的快速高效治疗。在这项工作中,制备了具有多界面核壳结构的硫酸钡/钛酸钡@聚吡咯(BaSO/BaTiO@PPy),通过精心设计的多界面结构,表现出增强的 MW 热响应。具体来说,BaSO/BaTiO@PPy 在 MW 照射下能在短时间内迅速升温,并有效地清除金黄色葡萄球菌(S. aureus)感染。在 15 分钟的 MW 照射后,BaSO/BaTiO@PPy 的抗菌效果可达 99.61%±0.22%。它们良好的热产生能力源于增强的介电损耗,包括多重界面极化和电导率损耗。此外,体外分析表明,其潜在的抗菌机制归因于在 MW 照射下,BaSO/BaTiO@PPy 引起的显著 MW 热效应以及细菌膜能量代谢途径的变化。考虑到显著的抗菌效率和可接受的生物安全性,我们预计它在拓宽治疗金黄色葡萄球菌感染性骨髓炎的理想候选药物方面具有重要价值。

意义陈述:由于抗生素治疗效果不佳和细菌耐药性的影响,深部细菌感染的治疗仍然具有挑战性。微波(MW)热疗(MTT)是一种很有前途的方法,具有显著的穿透能力,可集中加热感染区域。本研究提出利用核壳结构的 BaSO/BaTiO@PPy 作为 MW 吸收剂,在 MW 辐射下实现局部加热,以进行 MTT。体外实验表明,细菌膜的破坏主要是由于局部高温和中断的电子传递链。因此,在 MW 照射下,其杀菌率高达 99.61%。结果表明,BaSO/BaTiO@PPy 是消除深部组织细菌感染的一种很有前途的候选药物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验