Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
ACS Appl Mater Interfaces. 2023 Jun 14;15(23):28581-28593. doi: 10.1021/acsami.3c04538. Epub 2023 Jun 5.
Fiber-reinforced polymer composites as a structural material have garnered tremendous interest over the past few decades. In particular, carbon fiber-reinforced epoxy (CFRE) laminates have seen extensive use in the aircraft and aerospace industry. The role of the interface between the matrix and fiber is critical and dictates the overall structural properties of the CFRE laminate. Herein, we attempt to use a commercially viable, green, and facile approach, electrophoretic deposition (EPD), to deposit covalently coupled multiscale graphene oxide (GO)/carbon nanotube (CNT) nanoconstructs onto carbon fiber (CF) fabric. The rationale behind using these hybrid conjugates is to exploit the positive synergistic effect of combining two-dimensional (2D) GO and one-dimensional (1D) CNT nanoparticles, which provide strengthening through different mechanisms resulting in a stronger matrix/fiber interface. The modified laminate with just 0.1 wt % GO/CNT content exhibited an improvement in flexural strength (FS) by 24% and interlaminar shear strength (ILSS) by 30% compared to the neat CFRE. Scanning electron microscope (SEM) micrographs confirmed uniform and homogeneous GO and GO/CNT deposition on CF. Raman, Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analyses validate the successful functionalization of CNT and covalent coupling of GO and CNT. Atomic force microscope (AFM) and contact angle analyses indicate improved interaction between the CF and matrix. The deposition of the GO/CNT nanoconstruct on the CF improved the performance of CFREs owing to enhanced wettability, surface free energy, and surface roughness, leading to increased mechanical interlocking between the epoxy and CF at the interface. Dynamic mechanical analysis showed decreased segmental motion of epoxy chains due to improved interfacial adhesion following modification. Interesting observations were made in SEM fractography, which showed considerably different failure mechanisms in the modified CFREs. Electromagnetic interference (EMI) shielding effectiveness of -45 dB was achieved in the case of the GO/CNT-CFRE system. Electrothermal heating and de-icing performance of the modified system were also explored in this study. This versatile approach can open up new avenues for CFRE modification leading to considerably improved performance.
纤维增强聚合物复合材料作为一种结构材料,在过去几十年中引起了极大的兴趣。特别是碳纤维增强环氧树脂(CFRE)层压板在航空航天工业中得到了广泛的应用。基体与纤维之间的界面作用至关重要,决定了 CFRE 层压板的整体结构性能。在此,我们尝试使用一种商业上可行、绿色且简便的方法——电泳沉积(EPD),将共价偶联的多尺度氧化石墨烯(GO)/碳纳米管(CNT)纳米结构沉积到碳纤维(CF)织物上。使用这些杂化轭的基本原理是利用二维(2D)GO 和一维(1D)CNT 纳米粒子的正协同效应,通过不同的机制提供增强作用,从而形成更强的基体/纤维界面。与纯 CFRE 相比,仅含有 0.1wt%GO/CNT 的改性层压板的弯曲强度(FS)提高了 24%,层间剪切强度(ILSS)提高了 30%。扫描电子显微镜(SEM)照片证实了 GO 和 GO/CNT 在 CF 上的均匀和均匀沉积。拉曼、傅里叶变换红外光谱(FTIR)和 X 射线光电子能谱(XPS)分析验证了 CNT 的成功功能化和 GO 和 CNT 的共价偶联。原子力显微镜(AFM)和接触角分析表明,CF 与基体之间的相互作用得到了改善。GO/CNT 纳米结构在 CF 上的沉积提高了 CFRE 的性能,这是由于润湿性、表面自由能和表面粗糙度的提高,导致在界面处环氧和 CF 之间的机械互锁增加。动态力学分析表明,由于界面附着力的提高,环氧链的分子运动减少。在 SEM 断口形貌中观察到了有趣的现象,表明改性 CFRE 中的失效机制有很大的不同。GO/CNT-CFRE 体系的电磁干扰(EMI)屏蔽效能达到-45dB。在本研究中还探讨了改性系统的电热加热和除冰性能。这种多功能方法为 CFRE 的改性开辟了新的途径,从而显著提高了性能。