Patadiya Jigar, Wang Xungai, Joshi Ganapati, Kandasubramanian Balasubramanian, Naebe Minoo
Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia.
Additive Manufacturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India.
ACS Omega. 2023 May 15;8(21):18449-18461. doi: 10.1021/acsomega.2c08076. eCollection 2023 May 30.
Nacreous architecture has a good combination of toughness and modulus, which can be mimicked at the micron to submicron level using 3D printing to resolve the demand in numerous applications such as automobile, aerospace, and protection equipment. The present study examines the fabrication of two nacre structures, a nacre columnar (NC) and a nacre sheet (NS), and a pristine structure via fused deposition modeling (FDM) and explores their mechanically superior stacking structure, mechanism of failure, crack propagation, and energy dissipation. The examination reveals that the nacre structure has significant mechanical properties compared to a neat sample. Additionally, NS has 112.098 J/m impact resistance (9.37% improvement), 803.415 MPa elastic modulus (11.23% improvement), and 1563 MPa flexural modulus (10.85% improvement), which are all higher than those of the NC arrangement.
珍珠层结构具有良好的韧性和模量组合,利用3D打印技术可在微米到亚微米级别模拟这种结构,以满足汽车、航空航天和防护装备等众多应用领域的需求。本研究通过熔融沉积建模(FDM)研究了两种珍珠层结构(珍珠层柱状结构(NC)和珍珠层片状结构(NS))以及一种原始结构的制造过程,并探讨了它们机械性能优越的堆叠结构、失效机制、裂纹扩展和能量耗散。研究表明,与纯样品相比,珍珠层结构具有显著的机械性能。此外,NS的抗冲击性为112.098 J/m(提高了9.37%),弹性模量为803.415 MPa(提高了11.23%),弯曲模量为1563 MPa(提高了10.85%),均高于NC结构。