Suppr超能文献

利用流动驱动共沉积和离子凝胶化技术微流控制备具有排列微结构的稳定胶原微凝胶。

Microfluidic fabrication of stable collagen microgels with aligned microstructure using flow-driven co-deposition and ionic gelation.

作者信息

Correa Santiago O, Luo Xiaolong, Raub Christopher B

机构信息

Department of Biomedical Engineering, Washington DC, United States of America.

Department of Mechanical Engineering, Washington DC, United States of America.

出版信息

J Micromech Microeng. 2020 Aug;30(8). doi: 10.1088/1361-6439/ab8ebf. Epub 2020 May 28.

Abstract

The controlled biofabrication of stable, aligned collagen hydrogels within microfluidic devices is critically important to the design of more physiologically accurate, longer-cultured on-chip models of tissue and organs. To address this goal, collagen-alginate microgels were formed in a microfluidic channel by calcium crosslinking of a flowing collagen-alginate solution through a cross-channel chitosan membrane spanning a pore allowing ion diffusion but not convection. The gels formed within seconds as isolated islands in a single channel, and their growth was self-limiting. Total gel thickness was controlled by altering the concentration of calcium and collagen-alginate flow rate to reach an equilibrium of calcium diffusion and solution convection at the gel boundary, for a desired thickness of 30-200 m. Additionally, less calcium and higher flow produced greater compression of the gel, with regions farther from the pore compressing more. An aligned, stable collagen network was demonstrated by collagen birefringence, circumferential texture orientation, and little change in gel dimensions with de-chelation of calcium from alginate by prolonged flow of EDTA in the channel. Resultant gels were most stable and only slightly asymmetric when formed from solutions containing 8 mg ml collagen. Diffusion of 4 kDa and 70 kDa fluorescently-labeled dextran indicated size-dependent diffusion across the gel, and accessibility of the construct to appropriately-sized bioactive molecules. This work demonstrates the physicochemical parameter control of collagen gel formation in microfluidic devices, with utility toward on-chip models of dense extracellular matrix invasion, cancer growth and drug delivery to cells within dense extracellular matrix bodies.

摘要

在微流控装置中可控地生物制造稳定、排列整齐的胶原蛋白水凝胶,对于设计更符合生理实际、培养时间更长的组织和器官芯片模型至关重要。为实现这一目标,通过使流动的胶原蛋白 - 藻酸盐溶液穿过横跨一个允许离子扩散但不允许对流的孔的跨通道壳聚糖膜进行钙交联,在微流控通道中形成了胶原蛋白 - 藻酸盐微凝胶。凝胶在几秒钟内以单个通道中的孤立岛状形式形成,并且其生长是自我限制的。通过改变钙的浓度和胶原蛋白 - 藻酸盐流速来控制凝胶的总厚度,以在凝胶边界处达到钙扩散和溶液对流的平衡,从而获得30 - 200μm的所需厚度。此外,较少的钙和较高的流速会使凝胶产生更大的压缩,离孔较远的区域压缩程度更大。通过胶原蛋白双折射、圆周纹理取向以及通过在通道中长时间流动EDTA使藻酸盐中的钙脱螯合后凝胶尺寸变化不大,证明了排列整齐、稳定的胶原蛋白网络。当由含有8mg/ml胶原蛋白的溶液形成时,所得凝胶最稳定且仅略有不对称。4kDa和70kDa荧光标记葡聚糖的扩散表明了跨凝胶的尺寸依赖性扩散,以及该构建体对适当大小生物活性分子的可及性。这项工作展示了在微流控装置中对胶原蛋白凝胶形成的物理化学参数控制,对致密细胞外基质侵袭、癌症生长以及向致密细胞外基质体内细胞进行药物递送的芯片模型具有实用性。

相似文献

本文引用的文献

4
Thermally-controlled extrusion-based bioprinting of collagen.基于热控挤出的胶原蛋白生物打印。
J Mater Sci Mater Med. 2019 Apr 30;30(5):55. doi: 10.1007/s10856-019-6258-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验