Suppr超能文献

超快成核逆转过渡金属离子溶解,实现坚固水系电池。

Ultrafast Nucleation Reverses Dissolution of Transition Metal Ions for Robust Aqueous Batteries.

机构信息

Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun 130012, China.

Center for Research Equipment, Electron Microscopy & Spectroscopy Analysis Team, Korea Basic Science Institute, Daejeon 34133, South Korea.

出版信息

Nano Lett. 2023 Jun 14;23(11):5307-5316. doi: 10.1021/acs.nanolett.3c01435. Epub 2023 Jun 5.

Abstract

The dissolution of transition metal ions causes the notorious peeling of active substances and attenuates electrochemical capacity. Frustrated by the ceaseless task of pushing a boulder up a mountain, Sisyphus of the Greek myth yearned for a treasure to be unearthed that could bolster his efforts. Inspirationally, by using ferricyanide ions (Fe(CN)) in an electrolyte as a driving force and taking advantage of the fast nucleation rate of copper hexacyanoferrate (CuHCF), we successfully reversed the dissolution of Fe and Cu ions that typically occurs during cycling. The capacity retention increased from 5.7% to 99.4% at 0.5 A g after 10,000 cycles, and extreme stability of 99.8% at 1 A g after 40,000 cycles was achieved. Fe(CN) enables atom-by-atom substitution during the electrochemical process, enhancing conductivity and reducing volume change. Moreover, we demonstrate that this approach is applicable to various aqueous batteries (i.e., NH, Li, Na, K, Mg, Ca, and Al).

摘要

过渡金属离子的溶解会导致活性物质严重剥落,并削弱电化学容量。希腊神话中的西西弗斯(Sisyphus)不断地将巨石推上山顶,他渴望能发现一种宝藏来增强他的努力。受到启发,我们在电解液中使用铁氰化离子(Fe(CN))作为驱动力,并利用六氰合铁酸铜(CuHCF)的快速成核速率,成功地阻止了铁和铜离子在循环过程中的溶解。经过 10000 次循环后,在 0.5 A g 的电流密度下,容量保持率从 5.7%增加到 99.4%,在 1 A g 的电流密度下,经过 40000 次循环后,实现了 99.8%的极端稳定性。Fe(CN)在电化学过程中实现了原子级的取代,提高了电导率并减少了体积变化。此外,我们证明了这种方法适用于各种水系电池(即 NH、Li、Na、K、Mg、Ca 和 Al)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验