Hussain Nissar, Mobin Shaikh M
Department of Chemistry, Indian Institute of Technology Indore Simrol, Khandwa Road Indore 453552 India
Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore Simrol, Khandwa Road Indore 453552 India.
Chem Sci. 2025 Apr 14;16(19):8460-8469. doi: 10.1039/d5sc00171d. eCollection 2025 May 14.
Ammonium ions (NH ) are promising non-metallic charge carriers for sustainable and cost-effective advanced electrochemical energy storage. However, the development of electrode materials with well-defined structural features to facilitate rapid NH diffusion kinetics remains a significant challenge. In this study, we demonstrate the design of a novel oxygen-rich cobalt-based metal-organic framework (Co-MOF) showcasing unique (O-CoN) coordination geometry. This distinctive structure of Co-MOF contributes to high stability, abundant active sites, and enhanced electrochemical performance. To further boost performance, Co-MOF nanoflowers were uniformly integrated with TiCT MXene carbonized nanofibers (MXCNF), forming advanced Co-MOF@MXCNF heterostructures. These heterostructures exhibit a highly porous, nanofibrous morphology, delivering a notable specific capacitance of 980 F g at a current density of 1 A g and excellent cycling stability, retaining 91.1% capacitance after 16 000 cycles. When paired with a porous MXCNF anode, the ammonium-ion hybrid supercapacitors (AIHSCs) delivered an impressive energy density of 41.5 mW h kg with the corresponding power density of 800 mW kg, retaining 87% of their capacitance after 16 000 cycles. This study highlights the synergistic advantages of integrating stable MOFs with MXene nanofibers for remarkable ammonium-ion storage. It establishes a framework for designing high-performance energy storage materials, paving the way for next-generation sustainable energy storage devices.
铵离子(NH )是用于可持续且具有成本效益的先进电化学储能的有前景的非金属电荷载体。然而,开发具有明确结构特征以促进快速NH 扩散动力学的电极材料仍然是一项重大挑战。在本研究中,我们展示了一种新型富氧钴基金属有机框架(Co-MOF)的设计,其展现出独特的(O-CoN)配位几何结构。Co-MOF的这种独特结构有助于实现高稳定性、丰富的活性位点以及增强的电化学性能。为了进一步提升性能,将Co-MOF纳米花与TiCT MXene碳化纳米纤维(MXCNF)均匀整合,形成先进的Co-MOF@MXCNF异质结构。这些异质结构呈现出高度多孔的纳米纤维形态,在1 A g的电流密度下具有980 F g的显著比电容以及出色的循环稳定性,在16000次循环后仍保留91.1%的电容。当与多孔MXCNF阳极配对时,铵离子混合超级电容器(AIHSCs)展现出41.5 mW h kg的令人印象深刻的能量密度以及相应800 mW kg的功率密度,在16000次循环后保留其电容的87%。本研究突出了将稳定的MOF与MXene纳米纤维整合以实现卓越铵离子存储的协同优势。它建立了一个设计高性能储能材料的框架,为下一代可持续储能装置铺平了道路。