Center for Industrial Mathematics, University of Bremen, 28359 Bremen, Germany.
Department of Mathematics, Paderborn University, 33098 Paderborn, Germany.
Chaos. 2023 Jun 1;33(6). doi: 10.1063/5.0142969.
Recently, Hamiltonian neural networks (HNNs) have been introduced to incorporate prior physical knowledge when learning the dynamical equations of Hamiltonian systems. Hereby, the symplectic system structure is preserved despite the data-driven modeling approach. However, preserving symmetries requires additional attention. In this research, we enhance HNN with a Lie algebra framework to detect and embed symmetries in the neural network. This approach allows us to simultaneously learn the symmetry group action and the total energy of the system. As illustrating examples, a pendulum on a cart and a two-body problem from astrodynamics are considered.
最近,引入了哈密顿神经网络 (HNN),以便在学习哈密顿系统的动力学方程时纳入先验物理知识。由此,尽管采用了数据驱动的建模方法,但仍然保留了辛系统结构。然而,保持对称性需要额外的关注。在这项研究中,我们使用李代数框架增强了 HNN,以在神经网络中检测和嵌入对称性。这种方法使我们能够同时学习对称群作用和系统的总能量。作为说明性示例,考虑了一个在小车上的摆和一个来自天体力学的二体问题。