Suppr超能文献

具有自动对称性检测的哈密顿神经网络。

Hamiltonian neural networks with automatic symmetry detection.

机构信息

Center for Industrial Mathematics, University of Bremen, 28359 Bremen, Germany.

Department of Mathematics, Paderborn University, 33098 Paderborn, Germany.

出版信息

Chaos. 2023 Jun 1;33(6). doi: 10.1063/5.0142969.

Abstract

Recently, Hamiltonian neural networks (HNNs) have been introduced to incorporate prior physical knowledge when learning the dynamical equations of Hamiltonian systems. Hereby, the symplectic system structure is preserved despite the data-driven modeling approach. However, preserving symmetries requires additional attention. In this research, we enhance HNN with a Lie algebra framework to detect and embed symmetries in the neural network. This approach allows us to simultaneously learn the symmetry group action and the total energy of the system. As illustrating examples, a pendulum on a cart and a two-body problem from astrodynamics are considered.

摘要

最近,引入了哈密顿神经网络 (HNN),以便在学习哈密顿系统的动力学方程时纳入先验物理知识。由此,尽管采用了数据驱动的建模方法,但仍然保留了辛系统结构。然而,保持对称性需要额外的关注。在这项研究中,我们使用李代数框架增强了 HNN,以在神经网络中检测和嵌入对称性。这种方法使我们能够同时学习对称群作用和系统的总能量。作为说明性示例,考虑了一个在小车上的摆和一个来自天体力学的二体问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验