Suppr超能文献

Lie-Poisson 神经网络(LPNets):基于数据的具有对称性的哈密顿系统计算。

Lie-Poisson Neural Networks (LPNets): Data-based computing of Hamiltonian systems with symmetries.

机构信息

Computer Science Research Institute, Sandia National Laboratory, 1450 Innovation Pkwy SE, Albuquerque, NM, 87123, USA.

Division of Mathematical Sciences, Nanyang Technological University, 637371, Singapore.

出版信息

Neural Netw. 2024 May;173:106162. doi: 10.1016/j.neunet.2024.106162. Epub 2024 Feb 3.

Abstract

An accurate data-based prediction of the long-term evolution of Hamiltonian systems requires a network that preserves the appropriate structure under each time step. Every Hamiltonian system contains two essential ingredients: the Poisson bracket and the Hamiltonian. Hamiltonian systems with symmetries, whose paradigm examples are the Lie-Poisson systems, have been shown to describe a broad category of physical phenomena, from satellite motion to underwater vehicles, fluids, geophysical applications, complex fluids, and plasma physics. The Poisson bracket in these systems comes from the symmetries, while the Hamiltonian comes from the underlying physics. We view the symmetry of the system as primary, hence the Lie-Poisson bracket is known exactly, whereas the Hamiltonian is regarded as coming from physics and is considered not known, or known approximately. Using this approach, we develop a network based on transformations that exactly preserve the Poisson bracket and the special functions of the Lie-Poisson systems (Casimirs) to machine precision. We present two flavors of such systems: one, where the parameters of transformations are computed from data using a dense neural network (LPNets), and another, where the composition of transformations is used as building blocks (G-LPNets). We also show how to adapt these methods to a larger class of Poisson brackets. We apply the resulting methods to several examples, such as rigid body (satellite) motion, underwater vehicles, a particle in a magnetic field, and others. The methods developed in this paper are important for the construction of accurate data-based methods for simulating the long-term dynamics of physical systems.

摘要

准确预测哈密顿系统的长期演化需要一个网络,该网络在每个时间步都能保持适当的结构。每个哈密顿系统都包含两个基本要素:泊松括号和哈密顿量。具有对称性的哈密顿系统,其典范例子是李-泊松系统,已经被证明可以描述广泛的物理现象,从卫星运动到水下车辆、流体、地球物理应用、复杂流体和等离子体物理。这些系统中的泊松括号来自对称性,而哈密顿量则来自底层物理。我们将系统的对称性视为主要因素,因此李-泊松括号是已知的,而哈密顿量则被视为来自物理,并且被认为是未知的,或者是近似的。基于这种方法,我们开发了一种基于变换的网络,该网络可以精确地保持泊松括号和李-泊松系统的特殊函数(卡西米尔)到机器精度。我们提出了两种这样的系统:一种是使用密集神经网络(LPNets)从数据中计算变换参数,另一种是使用变换的组合作为构建块(G-LPNets)。我们还展示了如何将这些方法应用于更大类别的泊松括号。我们将得到的方法应用于几个例子,如刚体(卫星)运动、水下车辆、磁场中的粒子等。本文提出的方法对于构建基于数据的准确方法来模拟物理系统的长期动力学具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验