Suppr超能文献

利用保险索赔数据预测犬只的健康结果。

Predicting health outcomes in dogs using insurance claims data.

机构信息

Spryfox GmbH, Darmstadt, Germany.

Virginia Polytechnic Institute and State University, Blacksburg, USA.

出版信息

Sci Rep. 2023 Jun 5;13(1):9122. doi: 10.1038/s41598-023-36023-5.

Abstract

In this paper we propose a machine learning-based approach to predict a multitude of insurance claim categories related to canine diseases. We introduce several machine learning approaches that are evaluated on a pet insurance dataset consisting of 785,565 dogs from the US and Canada whose insurance claims have been recorded over 17 years. 270,203 dogs with a long insurance tenure were used to train a model while the inference is applicable to all dogs in the dataset. Through this analysis we demonstrate that with this richness of data, supported by the right feature engineering, and machine learning approaches, 45 disease categories can be predicted with high accuracy.

摘要

在本文中,我们提出了一种基于机器学习的方法,以预测与犬类疾病相关的多种保险理赔类别。我们介绍了几种机器学习方法,并在一个由来自美国和加拿大的 785565 只宠物狗组成的宠物保险数据集上进行了评估,这些宠物狗的保险理赔记录长达 17 年。我们使用 270203 只具有长期保险期限的狗来训练模型,而推理则适用于数据集中的所有狗。通过这项分析,我们证明了在如此丰富的数据支持下,通过正确的特征工程和机器学习方法,可以高精度地预测 45 种疾病类别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a46d/10241927/ae47e4c691e0/41598_2023_36023_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验