Suppr超能文献

序批式反应器处理生活污水的随机森林回归软测量模型的开发与应用。

Development and application of random forest regression soft sensor model for treating domestic wastewater in a sequencing batch reactor.

机构信息

Department of Material and Environmental Engineering, Chengdu Technological University, Chengdu, China.

Huicai Environmental Technology Co., Ltd., De Yuan Zhen, Pidu District, Chengdu, Sichuan, China.

出版信息

Sci Rep. 2023 Jun 5;13(1):9149. doi: 10.1038/s41598-023-36333-8.

Abstract

Small-scale distributed water treatment equipment such as sequencing batch reactor (SBR) is widely used in the field of rural domestic sewage treatment because of its advantages of rapid installation and construction, low operation cost and strong adaptability. However, due to the characteristics of non-linearity and hysteresis in SBR process, it is difficult to construct the simulation model of wastewater treatment. In this study, a methodology was developed using artificial intelligence and automatic control system that can save energy corresponding to reduce carbon emissions. The methodology leverages random forest model to determine a suitable soft sensor for the prediction of COD trends. This study uses pH and temperature sensors as premises for COD sensors. In the proposed method, data were pre-processed into 12 input variables and top 7 variables were selected as the variables of the optimized model. Cycle ended by the artificial intelligence and automatic control system instead of by fixed time control that was an uncontrolled scenario. In 12 test cases, percentage of COD removal is about 91. 075% while 24. 25% time or energy was saved from an average perspective. This proposed soft sensor selection methodology can be applied in field of rural domestic sewage treatment with advantages of time and energy saving. Time-saving results in increasing treatment capacity and energy-saving represents low carbon technology. The proposed methodology provides a framework for investigating ways to reduce costs associated with data collection by replacing costly and unreliable sensors with affordable and reliable alternatives. By adopting this approach, energy conservation can be maintained while meeting emission standards.

摘要

小型分布式水处理设备,如序批式反应器 (SBR),由于其快速安装和施工、运行成本低、适应性强等优点,在农村生活污水处理领域得到了广泛应用。然而,由于 SBR 工艺具有非线性和滞后性的特点,因此很难构建污水处理的模拟模型。本研究提出了一种利用人工智能和自动控制系统的方法,可以节约能源,相应减少碳排放。该方法利用随机森林模型确定合适的软传感器来预测 COD 趋势。本研究使用 pH 和温度传感器作为 COD 传感器的前提。在所提出的方法中,数据被预处理成 12 个输入变量,并选择前 7 个变量作为优化模型的变量。人工智能和自动控制系统而不是固定时间控制来结束循环,这是一个不受控制的场景。在 12 个测试案例中,COD 去除率约为 91.075%,而从平均角度来看,节省了 24.25%的时间或能源。这种软传感器选择方法可以应用于农村生活污水处理领域,具有节省时间和能源的优势。节省时间可以提高处理能力,节能则代表低碳技术。该方法提供了一种框架,通过用经济实惠且可靠的替代品替代昂贵且不可靠的传感器,来研究降低与数据收集相关的成本的方法。通过采用这种方法,可以在满足排放标准的同时节约能源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7589/10241833/faad9e9bf22c/41598_2023_36333_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验