Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China.
Environ Sci Pollut Res Int. 2023 Jul;30(32):78933-78947. doi: 10.1007/s11356-023-27574-1. Epub 2023 Jun 6.
Groundwater contaminant source identification (GCSI) has practical significance for groundwater remediation and liability. However, when applying the simulation-optimization method to precisely solve GCSI, the optimization model inevitably encounters the problems of high-dimensional unknown variables to identify, which might increase the nonlinearity. In particular, to solve such optimization models, the well-known heuristic optimization algorithms might fall into a local optimum, resulting in low accuracy of inverse results. For this reason, this paper proposes a novel optimization algorithm, namely, the flying foxes optimization (FFO) to solve the optimization model. We perform simultaneous identification of the release history of groundwater pollution sources and hydraulic conductivity and compare the results with those of the traditional genetic algorithm. In addition, to alleviate the massive computational load caused by the frequent invocation of the simulation model when solving the optimization model, we utilized the multilayer perception (MLP) to establish a surrogate model of the simulation model and compared it with the method of backpropagation algorithm (BP). The results show that the average relative error of the results of FFO is 2.12%, significantly outperforming the genetic algorithm (GA); the surrogate model of MLP can replace the simulation model for calculation with fitting accuracy of more than 0.999, which is better than the commonly used surrogate model of BP.
地下水污染物溯源识别(GCSI)对于地下水修复和责任认定具有重要的实际意义。然而,在应用模拟-优化方法来精确求解 GCSI 时,优化模型不可避免地会遇到需要识别的高维未知变量的问题,这可能会增加非线性。特别是,为了解决这样的优化模型,著名的启发式优化算法可能会陷入局部最优解,从而导致反演结果的精度较低。为此,本文提出了一种新颖的优化算法,即飞狐优化(FFO)来求解优化模型。我们同时识别地下水污染源的释放历史和水力传导率,并将结果与传统遗传算法的结果进行比较。此外,为了缓解求解优化模型时频繁调用模拟模型所带来的巨大计算负荷,我们利用多层感知(MLP)来建立模拟模型的代理模型,并将其与反向传播算法(BP)的方法进行比较。结果表明,FFO 的结果的平均相对误差为 2.12%,明显优于遗传算法(GA);MLP 的代理模型可以替代模拟模型进行计算,拟合精度超过 0.999,优于常用的 BP 代理模型。