深度学习模型在 PET 中的自动图像质量评估。
Deep learning model for automatic image quality assessment in PET.
机构信息
Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
出版信息
BMC Med Imaging. 2023 Jun 5;23(1):75. doi: 10.1186/s12880-023-01017-2.
BACKGROUND
A variety of external factors might seriously degrade PET image quality and lead to inconsistent results. The aim of this study is to explore a potential PET image quality assessment (QA) method with deep learning (DL).
METHODS
A total of 89 PET images were acquired from Peking Union Medical College Hospital (PUMCH) in China in this study. Ground-truth quality for images was assessed by two senior radiologists and classified into five grades (grade 1, grade 2, grade 3, grade 4, and grade 5). Grade 5 is the best image quality. After preprocessing, the Dense Convolutional Network (DenseNet) was trained to automatically recognize optimal- and poor-quality PET images. Accuracy (ACC), sensitivity, specificity, receiver operating characteristic curve (ROC), and area under the ROC Curve (AUC) were used to evaluate the diagnostic properties of all models. All indicators of models were assessed using fivefold cross-validation. An image quality QA tool was developed based on our deep learning model. A PET QA report can be automatically obtained after inputting PET images.
RESULTS
Four tasks were generated. Task2 showed worst performance in AUC,ACC, specificity and sensitivity among 4 tasks, and task1 showed unstable performance between training and testing and task3 showed low specificity in both training and testing. Task 4 showed the best diagnostic properties and discriminative performance between poor image quality (grade 1, grade 2) and good quality (grade 3, grade 4, grade 5) images. The automated quality assessment of task 4 showed ACC = 0.77, specificity = 0.71, and sensitivity = 0.83, in the train set; ACC = 0.85, specificity = 0.79, and sensitivity = 0.91, in the test set, respectively. The ROC measuring performance of task 4 had an AUC of 0.86 in the train set and 0.91 in the test set. The image QA tool could output basic information of images, scan and reconstruction parameters, typical instances of PET images, and deep learning score.
CONCLUSIONS
This study highlights the feasibility of the assessment of image quality in PET images using a deep learning model, which may assist with accelerating clinical research by reliably assessing image quality.
背景
各种外部因素可能会严重降低 PET 图像质量,并导致结果不一致。本研究旨在探索一种基于深度学习(DL)的潜在 PET 图像质量评估(QA)方法。
方法
本研究共采集了来自中国北京协和医学院医院(PUMCH)的 89 张 PET 图像。两位资深放射科医生对图像的真实质量进行了评估,并将其分为五个等级(等级 1、等级 2、等级 3、等级 4 和等级 5)。等级 5 为最佳图像质量。经过预处理后,使用密集卷积网络(DenseNet)自动识别优质和劣质 PET 图像。使用准确率(ACC)、敏感度、特异性、接收器工作特征曲线(ROC)和 ROC 曲线下面积(AUC)评估所有模型的诊断性能。所有模型的指标均采用五重交叉验证进行评估。基于我们的深度学习模型开发了一种图像质量 QA 工具。输入 PET 图像后,可自动获得 PET QA 报告。
结果
共生成了 4 个任务。任务 2 在 AUC、ACC、特异性和敏感度方面的表现均差于 4 个任务中的其他任务,任务 1 在训练和测试之间表现不稳定,任务 3 在训练和测试中特异性均较低。任务 4 显示出了在不良图像质量(等级 1、等级 2)和良好图像质量(等级 3、等级 4、等级 5)之间进行最佳诊断的特性和区分性能。任务 4 的自动质量评估在训练集中的准确率为 0.77,特异性为 0.71,敏感度为 0.83;在测试集中的准确率为 0.85,特异性为 0.79,敏感度为 0.91。任务 4 的 ROC 测量性能在训练集中的 AUC 为 0.86,在测试集中的 AUC 为 0.91。图像 QA 工具可以输出图像的基本信息、扫描和重建参数、典型的 PET 图像实例以及深度学习得分。
结论
本研究强调了使用深度学习模型评估 PET 图像质量的可行性,这可能有助于通过可靠地评估图像质量来加速临床研究。
相似文献
BMC Med Imaging. 2023-6-5
Hua Xi Kou Qiang Yi Xue Za Zhi. 2023-4-1
Transl Vis Sci Technol. 2020-9-17
J Magn Reson Imaging. 2019-2-27
引用本文的文献
J Imaging. 2025-3-27
IEEE Trans Radiat Plasma Med Sci. 2025-3
本文引用的文献
Sensors (Basel). 2022-2-14
Comput Methods Programs Biomed. 2021-9
Transl Vis Sci Technol. 2020-9-17
Biomed Opt Express. 2019-11-4
Nat Commun. 2019-7-15
Comput Biol Med. 2019-3-26