Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
Eur Radiol. 2020 Feb;30(2):1264-1273. doi: 10.1007/s00330-019-06407-1. Epub 2019 Sep 2.
The aim of this study was to develop a deep convolutional neural network (DCNN) for the prediction of the METAVIR score using B-mode ultrasonography images.
Datasets from two tertiary academic referral centers were used. A total of 13,608 ultrasonography images from 3446 patients who underwent surgical resection, biopsy, or transient elastography were used for training a DCNN for the prediction of the METAVIR score. Pathological specimens or estimated METAVIR scores derived from transient elastography were used as a reference standard. A four-class model (F0 vs. F1 vs. F23 vs. F4) was developed. Diagnostic performance of the algorithm was validated on a separate internal test set of 266 patients with 300 images and external test set of 572 patients with 1232 images. Performance in classification of cirrhosis was compared between the DCNN and five radiologists.
The accuracy of the four-class model was 83.5% and 76.4% on the internal and external test set, respectively. The area under the receiver operating characteristic curve (AUC) for classification of cirrhosis (F4) was 0.901 (95% confidence interval [CI], 0.865-0.937) on the internal test set and 0.857 (95% CI, 0.825-0.889) on the external test set, respectively. The AUC of the DCNN for classification of cirrhosis (0.857) was significantly higher than that of all five radiologists (AUC range, 0.656-0.816; p value < 0.05) using the external test set.
The DCNN showed high accuracy for determining METAVIR score using ultrasonography images and achieved better performance than that of radiologists in the diagnosis of cirrhosis.
• DCNN accurately classified the ultrasonography images according to the METAVIR score. • The AUROC of this algorithm for cirrhosis assessment was significantly higher than that of radiologists. • DCNN using US images may offer an alternative tool for monitoring liver fibrosis.
本研究旨在开发一种基于 B 型超声图像的深度卷积神经网络(DCNN),用于预测 METAVIR 评分。
使用来自两个三级学术转诊中心的数据集。共使用 3446 例接受手术切除、活检或瞬时弹性成像的患者的 13608 个超声图像来训练 DCNN,以预测 METAVIR 评分。病理标本或瞬时弹性成像估计的 METAVIR 评分被用作参考标准。建立了一个四分类模型(F0 与 F1 与 F23 与 F4)。该算法的诊断性能在一个包含 266 例患者 300 个图像的内部测试集和一个包含 572 例患者 1232 个图像的外部测试集上进行了验证。在肝硬化的分类中,将 DCNN 与五名放射科医生的表现进行了比较。
该四分类模型在内部测试集和外部测试集上的准确率分别为 83.5%和 76.4%。内部测试集上肝硬化(F4)分类的受试者工作特征曲线下面积(AUC)为 0.901(95%置信区间[CI],0.865-0.937),外部测试集上为 0.857(95%CI,0.825-0.889)。在外部测试集上,DCNN 用于肝硬化分类的 AUC(0.857)显著高于五名放射科医生(AUC 范围为 0.656-0.816;p 值均<0.05)。
DCNN 利用超声图像对 METAVIR 评分进行了高精度的判定,在肝硬化的诊断中表现优于放射科医生。
• DCNN 准确地根据 METAVIR 评分对超声图像进行分类。• 该算法用于评估肝硬化的 AUROC 明显高于放射科医生。• 基于 US 图像的 DCNN 可能为监测肝纤维化提供一种替代工具。