Suppr超能文献

贝叶斯方法估计 MHC-肽结合阈值。

A Bayesian approach to estimate MHC-peptide binding threshold.

机构信息

Department of Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China.

School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong SAR, China.

出版信息

Brief Bioinform. 2023 Jul 20;24(4). doi: 10.1093/bib/bbad208.

Abstract

Major histocompatibility complex (MHC)-peptide binding is a critical step in enabling a peptide to serve as an antigen for T-cell recognition. Accurate prediction of this binding can facilitate various applications in immunotherapy. While many existing methods offer good predictive power for the binding affinity of a peptide to a specific MHC, few models attempt to infer the binding threshold that distinguishes binding sequences. These models often rely on experience-based ad hoc criteria, such as 500 or 1000nM. However, different MHCs may have different binding thresholds. As such, there is a need for an automatic, data-driven method to determine an accurate binding threshold. In this study, we proposed a Bayesian model that jointly infers core locations (binding sites), the binding affinity and the binding threshold. Our model provided the posterior distribution of the binding threshold, enabling accurate determination of an appropriate threshold for each MHC. To evaluate the performance of our method under different scenarios, we conducted simulation studies with varying dominant levels of motif distributions and proportions of random sequences. These simulation studies showed desirable estimation accuracy and robustness of our model. Additionally, when applied to real data, our results outperformed commonly used thresholds.

摘要

主要组织相容性复合体 (MHC)-肽结合是使肽成为 T 细胞识别的抗原的关键步骤。准确预测这种结合可以促进免疫治疗中的各种应用。虽然许多现有的方法都能很好地预测肽与特定 MHC 的结合亲和力,但很少有模型试图推断区分结合序列的结合阈值。这些模型通常依赖于基于经验的特定标准,例如 500 或 1000nM。然而,不同的 MHC 可能具有不同的结合阈值。因此,需要一种自动的、基于数据的方法来确定准确的结合阈值。在这项研究中,我们提出了一种贝叶斯模型,该模型可以联合推断核心位置(结合位点)、结合亲和力和结合阈值。我们的模型提供了结合阈值的后验分布,从而能够为每个 MHC 准确确定合适的阈值。为了评估我们的方法在不同情况下的性能,我们进行了具有不同主导水平的基序分布和随机序列比例的模拟研究。这些模拟研究表明,我们的模型具有令人满意的估计准确性和稳健性。此外,当应用于真实数据时,我们的结果优于常用的阈值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验