Suppr超能文献

基于实验验证的 MHC-肽结合数据集的 MHC 类 I 结合预测工具的性能评估。

Performance Evaluation of MHC Class-I Binding Prediction Tools Based on an Experimentally Validated MHC-Peptide Binding Data Set.

机构信息

German Cancer Research Center (DKFZ), Immunotherapy and Immunoprevention, Heidelberg, Germany.

German Center for Infection Research (DZIF), Molecular Vaccine Design, partner site Heidelberg, Heidelberg, Germany.

出版信息

Cancer Immunol Res. 2019 May;7(5):719-736. doi: 10.1158/2326-6066.CIR-18-0584. Epub 2019 Mar 22.

Abstract

Knowing whether a protein can be processed and the resulting peptides presented by major histocompatibility complex (MHC) is highly important for immunotherapy design. MHC ligands can be predicted by peptide-MHC class-I binding prediction algorithms. However, prediction performance differs considerably, depending on the selected algorithm, MHC class-I type, and peptide length. We evaluated the prediction performance of 13 algorithms based on binding affinity data of 8- to 11-mer peptides derived from the HPV16 E6 and E7 proteins to the most prevalent human leukocyte antigen (HLA) types. Peptides from high to low predicted binding likelihood were synthesized, and their HLA binding was experimentally verified by competitive binding assays. Based on the actual binding capacity of the peptides, the performance of prediction algorithms was analyzed by calculating receiver operating characteristics (ROC) and the area under the curve (A). No algorithm outperformed others, but different algorithms predicted best for particular HLA types and peptide lengths. The sensitivity, specificity, and accuracy of decision thresholds were calculated. Commonly used decision thresholds yielded only 40% sensitivity. To increase sensitivity, optimal thresholds were calculated, validated, and compared. In order to make maximal use of prediction algorithms available online, we developed MHCcombine, a web application that allows simultaneous querying and output combination of up to 13 prediction algorithms. Taken together, we provide here an evaluation of peptide-MHC class-I binding prediction tools and recommendations to increase prediction sensitivity to extend the number of potential epitopes applicable as targets for immunotherapy.

摘要

了解蛋白质是否可被加工以及主要组织相容性复合体 (MHC) 呈现的相关肽段对于免疫疗法的设计非常重要。MHC 配体可通过肽-MHC Ⅰ类结合预测算法进行预测。然而,由于所选算法、MHC Ⅰ类类型和肽长度的不同,预测性能存在显著差异。我们基于 HPV16 E6 和 E7 蛋白的 8-11 个氨基酸肽与最常见的人类白细胞抗原 (HLA) 类型的结合亲和力数据,评估了 13 种算法的预测性能。我们合成了高至低预测结合可能性的肽段,并通过竞争性结合测定实验验证了它们与 HLA 的结合。根据肽段的实际结合能力,通过计算受试者工作特征 (ROC) 和曲线下面积 (A) 分析预测算法的性能。没有一种算法优于其他算法,但不同的算法对特定的 HLA 类型和肽长度有最佳的预测效果。计算了决策阈值的敏感性、特异性和准确性。常用的决策阈值仅产生 40%的敏感性。为了提高敏感性,我们计算、验证和比较了最优的阈值。为了最大限度地利用在线提供的预测算法,我们开发了 MHCcombine,这是一种网络应用程序,允许同时查询和输出多达 13 种预测算法的结果。综上所述,我们在此评估了肽-MHC Ⅰ类结合预测工具,并提出了提高预测敏感性的建议,以扩大适用于免疫治疗的潜在表位数量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验