Suppr超能文献

MATTE:用于抗噪声表型-基因相关分析的转录组模块比对管道。

MATTE: a pipeline of transcriptome module alignment for anti-noise phenotype-gene-related analysis.

机构信息

Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China.

出版信息

Brief Bioinform. 2023 Jul 20;24(4). doi: 10.1093/bib/bbad207.

Abstract

A phenotype may be associated with multiple genes that interact with each other in the form of a gene module or network. How to identify these relationships is one important aspect of comparative transcriptomics. However, it is still a challenge to align gene modules associated with different phenotypes. Although several studies attempted to address this issue in different aspects, a general framework is still needed. In this study, we introduce Module Alignment of TranscripTomE (MATTE), a novel approach to analyze transcriptomics data and identify differences in a modular manner. MATTE assumes that gene interactions modulate a phenotype and models phenotype differences as gene location changes. Specifically, we first represented genes by a relative differential expression to reduce the influence of noise in omics data. Meanwhile, clustering and aligning are combined to depict gene differences in a modular way robustly. The results show that MATTE outperformed state-of-the-art methods in identifying differentially expressed genes under noise in gene expression. In particular, MATTE could also deal with single-cell ribonucleic acid-seq data to extract the best cell-type marker genes compared to other methods. Additionally, we demonstrate how MATTE supports the discovery of biologically significant genes and modules, and facilitates downstream analyses to gain insight into breast cancer. The source code of MATTE and case analysis are available at https://github.com/zjupgx/MATTE.

摘要

表型可能与多个基因相关,这些基因以基因模块或网络的形式相互作用。如何识别这些关系是比较转录组学的一个重要方面。然而,对齐与不同表型相关的基因模块仍然是一个挑战。尽管有几项研究试图从不同方面解决这个问题,但仍需要一个通用的框架。在这项研究中,我们引入了转录组模块对齐方法(MATTE),这是一种分析转录组数据并以模块化方式识别差异的新方法。MATTE 假设基因相互作用调节表型,并将表型差异建模为基因位置的变化。具体来说,我们首先通过相对差异表达来表示基因,以减少组学数据中噪声的影响。同时,聚类和对齐被结合在一起,以稳健的方式以模块化方式描绘基因差异。结果表明,MATTE 在识别基因表达噪声下的差异表达基因方面优于最先进的方法。特别是,MATTE 还可以处理单细胞核糖核酸测序数据,与其他方法相比,提取最佳的细胞类型标记基因。此外,我们展示了 MATTE 如何支持发现具有生物学意义的基因和模块,并促进下游分析,以深入了解乳腺癌。MATTE 的源代码和案例分析可在 https://github.com/zjupgx/MATTE 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4e1/10359084/6aefee3f5971/bbad207f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验