Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
School of Artificial Intelligence, Peking University, Beijing 100191, China.
Bioinformatics. 2023 Jun 1;39(6). doi: 10.1093/bioinformatics/btad363.
Transcriptional profiles of diverse tissues provide significant insights in both fundamental and translational researches, while transcriptome information is not always available for tissues that require invasive biopsies. Alternatively, predicting tissue expression profiles from more accessible "surrogate" samples, especially blood transcriptome, has become a promising strategy when invasive procedures are not practical. However, existing approaches ignore tissue-shared intrinsic relevance, inevitably limiting predictive performance.
We propose a unified deep learning-based multi-task learning framework, multi-tissue transcriptome mapping (MTM), enabling the prediction of individualized expression profiles from any available tissue of an individual. By jointly leveraging individualized cross-tissue information from reference samples through multi-task learning, MTM achieves superior sample-level and gene-level performance on unseen individuals. With the high prediction accuracy and the ability to preserve individualized biological variations, MTM could facilitate both fundamental and clinical biomedical research.
MTM's code and documentation are available upon publication on GitHub (https://github.com/yangence/MTM).
不同组织的转录组谱在基础和转化研究中都提供了重要的见解,而对于需要进行侵入性活检的组织,并不总是有转录组信息。相反,当侵入性程序不实际时,从更易获取的“替代”样本(尤其是血液转录组)预测组织表达谱已成为一种很有前途的策略。然而,现有的方法忽略了组织间固有的相关性,不可避免地限制了预测性能。
我们提出了一个基于深度学习的统一多任务学习框架,即多组织转录组图谱(MTM),能够从个体的任何可用组织预测个体的表达谱。通过联合利用参考样本中个体化的跨组织信息进行多任务学习,MTM 在未见个体的样本水平和基因水平上均取得了优异的性能。MTM 具有较高的预测准确性和保留个体化生物变异的能力,可促进基础和临床生物医学研究。
MTM 的代码和文档将在发表后于 GitHub 上提供(https://github.com/yangence/MTM)。