Suppr超能文献

对抗生成基因表达数据。

Adversarial generation of gene expression data.

机构信息

Department of Computer Science and Technology, University of Cambridge, Cambridge, UK.

Department of Computer Science, University College London, London, UK.

出版信息

Bioinformatics. 2022 Jan 12;38(3):730-737. doi: 10.1093/bioinformatics/btab035.

Abstract

MOTIVATION

High-throughput gene expression can be used to address a wide range of fundamental biological problems, but datasets of an appropriate size are often unavailable. Moreover, existing transcriptomics simulators have been criticized because they fail to emulate key properties of gene expression data. In this article, we develop a method based on a conditional generative adversarial network to generate realistic transcriptomics data for Escherichia coli and humans. We assess the performance of our approach across several tissues and cancer-types.

RESULTS

We show that our model preserves several gene expression properties significantly better than widely used simulators, such as SynTReN or GeneNetWeaver. The synthetic data preserve tissue- and cancer-specific properties of transcriptomics data. Moreover, it exhibits real gene clusters and ontologies both at local and global scales, suggesting that the model learns to approximate the gene expression manifold in a biologically meaningful way.

AVAILABILITY AND IMPLEMENTATION

Code is available at: https://github.com/rvinas/adversarial-gene-expression.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

高通量基因表达可用于解决广泛的基础生物学问题,但通常无法获得适当大小的数据集。此外,现有的转录组学模拟器因未能模拟基因表达数据的关键特性而受到批评。在本文中,我们开发了一种基于条件生成对抗网络的方法,用于生成大肠杆菌和人类的真实转录组学数据。我们评估了我们的方法在多个组织和癌症类型中的性能。

结果

我们表明,我们的模型在许多基因表达特性上的表现明显优于广泛使用的模拟器,如 SynTReN 或 GeneNetWeaver。合成数据保留了转录组学数据的组织和癌症特异性特性。此外,它在局部和全局尺度上都表现出真实的基因簇和本体,表明该模型学会了以有意义的生物学方式逼近基因表达流形。

可用性和实现

代码可在:https://github.com/rvinas/adversarial-gene-expression 获得。

补充信息

补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b5e/8756177/76247a7eef4f/btab035f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验