Öztürk Sözen Esra, Eryaşar Elif, Abdioğlu Cihat
Sinop University, Mathematics, Sinop ,Turkey.
Karamanoğlu Mehmetbey University, Mathematics and Science Education, Karaman ,Turkey.
Curr Org Synth. 2023 Jun 6. doi: 10.2174/1570179420666230606140448.
Chemical graph theory is a sub-branch of mathematical chemistry, assuming each atom of a molecule is a vertex and each bond between atoms as an edge.
Owing to this theory, it is possible to avoid the difficulties of chemical analysis because many of the chemical properties of molecules can be determined and analyzed via topological indices. Due to these parameters, it is possible to determine the physicochemical properties, biological activities, environmental behaviours and spectral properties of molecules. Nowadays, studies on the zero divisor graph of Z_n via topological indices is a trending field in spectral graph theory.
For a commutative ring R with identity, the prime ideal sum graph of R is a graph whose vertices are nonzero proper ideals of R and two distinctvertices I and J are adjacent if and only if I+J is a prime ideal of R.
In this study the forgotten topological index and Wiener index of the prime ideal sum graph of Z_n are calculated for n=p^α,pq,p^2 q,p^2 q^2,pqr,p^3 q,p^2 qr,pqrs where p,q,r and s are distinct primes and a Sage math code is developed for designing graph and computing the indices.
In the light of this study, it is possible to handle the other topological descriptors for computing and developing new algorithms for next studies and to study some spectrum and graph energies of certain finite rings with respect to PIS-graph easily.
化学图论是数学化学的一个子分支,假设分子中的每个原子为一个顶点,原子间的每个键为一条边。
由于该理论,有可能避免化学分析的困难,因为许多分子的化学性质可以通过拓扑指数来确定和分析。基于这些参数,可以确定分子的物理化学性质、生物活性、环境行为和光谱性质。如今,通过拓扑指数对(Z_n)的零因子图进行研究是光谱图论中的一个热门领域。
对于有单位元的交换环(R),(R)的素理想和图是一个图,其顶点是(R)的非零真理想,当且仅当(I + J)是(R)的素理想时,两个不同的顶点(I)和(J)相邻。
在本研究中,计算了(n = p^α)、(pq)、(p^2q)、(p^2q^2)、(pqr)、(p^3q)、(p^2qr)、(pqrs)(其中(p)、(q)、(r)和(s)是不同的素数)时(Z_n)的素理想和图的遗忘拓扑指数和维纳指数,并开发了一个Sage数学代码用于设计图和计算指数。
根据本研究,有可能处理其他拓扑描述符以进行计算并为后续研究开发新算法,并且可以轻松地研究某些有限环关于素理想和图的一些谱和图能量。