Suppr超能文献

计算代数超图的基于度的拓扑指标。

Computing degree based topological indices of algebraic hypergraphs.

作者信息

Alali Amal S, Sözen Esra Öztürk, Abdioğlu Cihat, Ali Shakir, Eryaşar Elif

机构信息

Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P. O. Box-84428, Riyadh-11671, Saudi Arabia.

Department of Mathematics, Sinop University, 57000, Sinop, Turkey.

出版信息

Heliyon. 2024 Jul 22;10(15):e34696. doi: 10.1016/j.heliyon.2024.e34696. eCollection 2024 Aug 15.

Abstract

Topological indices are numerical parameters that indicate the topology of graphs or hypergraphs. A hypergraph consists of a vertex set and an edge set , where each edge is a subset of with at least two elements. In this paper, our main aim is to introduce a general hypergraph structure for the prime ideal sum (PIS)- graph of a commutative ring. The prime ideal sum hypergraph of a ring is a hypergraph whose vertices are all non-trivial ideals of and a subset of vertices with at least two elements is a hyperedge whenever is a prime ideal of for each non-trivial ideal , in and is maximal with respect to this property. Moreover, we also compute some degree-based topological indices (first and second Zagreb indices, forgotten topological index, harmonic index, Randić index, Sombor index) for these hypergraphs. In particular, we describe some degree-based topological indices for the newly defined algebraic hypergraph based on prime ideal sum for where , for the distinct primes and .

摘要

拓扑指数是指示图或超图拓扑结构的数值参数。超图由一个顶点集和一个边集组成,其中每条边是顶点集的一个至少有两个元素的子集。在本文中,我们的主要目的是为交换环的素理想和(PIS)图引入一种通用的超图结构。环的素理想和超图是一个超图,其顶点是环的所有非平凡理想,并且当对于环中的每个非平凡理想 、 , 是 的素理想且关于此性质是极大时,顶点的一个至少有两个元素的子集是一条超边。此外,我们还计算了这些超图的一些基于度的拓扑指数(第一和第二 Zagreb 指数、遗忘拓扑指数、调和指数、Randić指数、Sombor 指数)。特别地,我们描述了基于素理想和为 (其中 , 为不同的素数 、 )新定义的代数超图的一些基于度的拓扑指数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/624c/11333895/43e25adc4377/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验