Suppr超能文献

稀有核苷酸 l-糖对细菌核苷酸转移酶的反馈抑制限制了底物的混杂性。

Feedback Inhibition of Bacterial Nucleotidyltransferases by Rare Nucleotide l-Sugars Restricts Substrate Promiscuity.

机构信息

Department of Chemistry, New York University, New York, New York 10003, United States.

出版信息

J Am Chem Soc. 2023 Jul 26;145(29):15632-15638. doi: 10.1021/jacs.3c02319. Epub 2023 Jun 7.

Abstract

Bacterial glycomes are rich in prokaryote-specific or "rare" sugars that are absent in mammals. Like common sugars found across organisms, rare sugars are typically activated as nucleoside diphosphate sugars (NDP-sugars) by nucleotidyltransferases. In bacteria, the nucleotidyltransferase RmlA initiates the production of several rare NDP-sugars, which in turn regulate downstream glycan assembly through feedback inhibition of RmlA via binding to an allosteric site. , RmlA activates a range of common sugar-1-phosphates to produce NDP-sugars for biochemical and synthetic applications. However, our ability to probe bacterial glycan biosynthesis is hindered by limited chemoenzymatic access to rare NDP-sugars. We postulate that natural feedback mechanisms impact nucleotidyltransferase utility. Here, we use synthetic rare NDP-sugars to identify structural features required for regulation of RmlA from diverse bacterial species. We find that mutation of RmlA to eliminate allosteric binding of an abundant rare NDP-sugar facilitates the activation of noncanonical rare sugar-1-phosphate substrates, as products no longer affect turnover. In addition to promoting an understanding of nucleotidyltransferase regulation by metabolites, this work provides new routes to access rare sugar substrates for the study of important bacteria-specific glycan pathways.

摘要

细菌糖组富含原核生物特有的或“稀有”糖,而这些糖在哺乳动物中是不存在的。与存在于各种生物体中的常见糖一样,稀有糖通常通过核苷酸转移酶被激活为核苷二磷酸糖(NDP-sugar)。在细菌中,核苷酸转移酶 RmlA 启动了几种稀有 NDP-sugar 的产生,这些 NDP-sugar 通过结合变构位点反馈抑制 RmlA,从而调节下游聚糖组装。RmlA 还可以激活一系列常见的糖-1-磷酸,以产生 NDP-sugar,用于生化和合成应用。然而,由于对稀有 NDP-sugar 的化学酶法获取有限,我们对细菌聚糖生物合成的探测能力受到了限制。我们假设天然反馈机制会影响核苷酸转移酶的实用性。在这里,我们使用合成的稀有 NDP-sugar 来鉴定来自不同细菌物种的 RmlA 调节所需的结构特征。我们发现,通过突变 RmlA 消除了大量稀有 NDP-sugar 的变构结合,从而促进了非规范稀有糖-1-磷酸底物的激活,因为产物不再影响周转。除了促进对代谢物调节核苷酸转移酶的理解外,这项工作还为研究重要的细菌特异性聚糖途径提供了获取稀有糖底物的新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e88e/10375476/1ef487f1e175/ja3c02319_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验